Reprise on Languages and Grammars

- A language is a set (usually infinite) of strings, also known as sentences.
- Each string consists of a sequence of symbols taken from some alphabet.
- You cannot define a language by listing the strings.
- You can define a language by a grammar — a finite set of rules for generating the strings.
- A grammar, G, is a quadruple (V_N, V_T, P, S) where:
 - V_N is a set of symbols called nonterminals.
 - V_T is a set of symbols called Terminals, the "words" of the language.
 - P is a set of Productions – the rules for the formation of sentences.
 - $S \in V_N$ is the Start symbol – the starting point.

Different kinds of Grammars

- Grammars have a set of productions.
- Most general form is $\alpha \to \beta$.
- Where α is a string including a non-terminal and β is any string (of terminals and non-terminals).
- Different kinds of grammars constrain the productions:
 - TYPE 1: $| \alpha | \leq | \beta |$
 - TYPE 2: α consists only of a non-terminal.
 - TYPE 3: α consists only of a non-terminal and β consists only of a terminal or a terminal followed by a non-terminal.

Languages and Machines

- We can also define a language by specifying a machine that will recognise sentences of the language.
- The general structure of these machines is:

 ![Machine structure diagram]

 - Input tape with string to be recognised
 - Finite state control i.e. a "CPU"
 - Memory

Machine structure

- The input tape is divided into squares — one per terminal symbol of the string to be recognised.
- The finite state control has a read head, initially positioned at the first input symbol.
- Every time an input symbol is processed, the read head moves to the next symbol.
- The auxiliary memory can be read and written in the process of recognising the sentence — normally a linear structure, such as a tape, a stack, etc. with one symbol accessible at a time.
- The finite state control has a number of possible states including an initial state q_0 and a set of possible final or goal states.
Machine structure

- The behaviour of the machine is defined by a mapping from the current state, (possibly) the current input symbol (under the read head) and the current memory symbol to the next state, the new memory symbol(s) and (possibly) a movement of the memory access point.
- These state transitions can be specified in a table or in a diagram:

<table>
<thead>
<tr>
<th>memory symbol old</th>
<th>input,old/new,move</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_3</td>
<td>q_i/new,move</td>
</tr>
</tbody>
</table>

Acceptance of strings

- The machine starts in the initial state with the read head over the first input symbol and the auxiliary memory empty (or some predetermined contents).
- The aim is to finish in one of the goal states with the input exhausted, in which case the string is accepted (as a sentence).
- Otherwise, the string is not accepted.

Different kinds of machines

- The kind of auxiliary memory determines the kinds of languages that can be recognised:

<table>
<thead>
<tr>
<th>Aux memory</th>
<th>Kind of machine</th>
<th>Kind of grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Finite state aut.</td>
<td>TYPE3</td>
</tr>
<tr>
<td>Stack</td>
<td>Push down aut.</td>
<td>TYPE2</td>
</tr>
<tr>
<td>Tape bounded by input length</td>
<td>Linear bounded aut.</td>
<td>TYPE1</td>
</tr>
<tr>
<td>Unbounded tape</td>
<td>Turing machine</td>
<td>TYPE0</td>
</tr>
</tbody>
</table>

Example of Finite State Automaton

- Consider recognising strings \((abc)^n\) where \(n \geq 1\)
 —final states are indicated by a double outline

- We could explicitly add error handling:
 —add an error state
 —have a transition from any state to the error state on unexpected input
Example of Finite State Automaton

- We can demonstrate acceptance of the string abcabc with a sequence of configurations, each of which indicates the current state, the unprocessed input and the auxiliary memory (none in this case):

 \[(q_0, \text{abcabc}) \rightarrow (q_1, \text{bcabc}) \rightarrow (q_2, \text{cabc}) \rightarrow (q_3, \text{abc}) \rightarrow (q_1, \text{bc}) \rightarrow (q_2, \text{c}) \rightarrow (q_3, \text{)}\]

 Accept!

Key result for Finite State Automata

- The class of languages that can be recognised by finite state automata is the same as the class of languages that can be generated by TYPE3 grammars

 - This can be proved/demonstrated by showing how to map between the two kinds of specifications
 - Consider a TYPE3 grammar with start symbol S:
 - introduce an initial state \(q_S\) and a final state \(q_F\)
 - for each (other) non-terminal A, introduce a state \(q_A\)
 - for productions \(A \rightarrow x\) (where \(x\) is a terminal), add a transition:

 \[
 \begin{array}{c}
 q_A \\
 \end{array} \rightarrow \begin{array}{c}
 x \\
 \end{array} \rightarrow \begin{array}{c}
 q_F \\
 \end{array}
 \]

 - for productions \(A \rightarrow xB\), add a transition:

Example of Push Down Automaton

- Consider recognising strings \(a^n b^n\) where \(n \geq 1\)

 - Transitions are encoded:
 - input, top of stack / replacement for top of stack
 - Stack initially has Z on it

Example

- Consider the earlier example of the language consisting of strings \((abc)^n\) where \(n \geq 1\)
- The specified machine (with some minor relabelling) corresponds to the grammar:
 \[\{(S,A,B,C), \{a,b,c\}, P, S\}\]
- where \(P\) consists of the productions:

 \[
 S \rightarrow aB \\
 B \rightarrow bC \\
 C \rightarrow c \\
 C \rightarrow cA \\
 A \rightarrow aB
 \]
- The relabelling would be:

 \[
 q_0 = q_S, \ q_1 = q_B, \ q_2 = q_C, \ q_3 = q_A, \ q_F
 \]
Example of Push Down Automaton

- We can demonstrate acceptance of the string aaabbb with a sequence of configurations, each of which indicates the current state, the unprocessed input and the stack contents (top of stack on the left):

 \[(q_0, aaabbb, Z) \mid (q_1, aabb, aZ) \mid (q_1, bbb, aaZ) \mid (q_2, bb, aaZ) \mid (q_2, b, aZ) \mid (q_2, -, Z) \mid (q_3, -, -)\]

 Accept!

Key result for Push Down Automata

- The class of languages that can be recognised by push down automata is the same as the class of languages that can be generated by TYPE2 grammars
- This can be proved/demonstrated by showing how to map between the two kinds of specifications
- Consider a TYPE2 grammar with start symbol S:
 - introduce an initial state \(q_0\), a processing state \(q_1\) and a final state \(q_2\)
 - for start symbol S, add a transition
 - for productions \(A \rightarrow \alpha\), add a transition:
 - for terminals \(x\), add a transition:
 - add a final transition:

Example

- Consider the earlier example of the language \(a^n b^n\) where \(n \geq 1\)
- Consider the grammar:
 \[\{\{S,A\}, \{a,b\}, P, S\}\]
 - where \(P\) consists of the productions:
 - \(S \rightarrow aAb\)
 - \(A \rightarrow \epsilon\)
 - \(A \rightarrow aAb\)
 - The push down automaton would be:

Summary Notes

- The lecture has considered different kinds of machines and their relationship to different kinds of grammars
- The key issue is to understand this relationship
 - TYPE3 grammars which are used to define tokens in languages correspond to the simplest kind of machine and form the basis of lexical analysis
 - TYPE2 grammars are used to define the syntax of programming languages correspond to machines with a stack and form the basis of syntactic analysis
- We have glossed over a number of issues
 - transforming machines to grammars
 - dealing with non-deterministic machines