
Data Movement Optimisation in Point-Free

Form

Brad Alexander and Andrew Wendelborn

School of Computer Science
University of Adelaide

5005, Adelaide, SA, Australia
{brad,andrew}@cs.adelaide.edu.au

Abstract. Programs written in point-free form express computation
purely in terms of functions. Such programs are especially amenable to
local transformation. In this paper, we describe a process for optimising
the transport of data through point-free programs. This process system-
atically applies local transformations to achieve effective global optimi-
sation. We describe the strategies we employ to ensure this process is
tractable. This process has been implemented as an intermediate stage
of a compiler. The optimiser is shown to be highly effective, producing
code of comparable efficiency to hand-written code.

1 Introduction

Transformation is the key to any program improvement process. By using highly
transformable programming notations we pave the way for the application of
deep and pervasive transformation techniques. Programs written in point-free
form are particularly amenable to transformation[5]. In point-free code all com-
putation is expressed purely in terms of functions. Point-free code contains no
variables to store values generated during program execution. As a consequence,
functions cannot rely on variables as agents to transmit data through the pro-
gram. Instead, the functions themselves are responsible for routing data through
the code. This exposed data-transport maps well to distributed-memory plat-
forms and there have been a number of experiments mapping functions found in
point-free form to such platforms[18, 8, 6].

As well as providing a path to distributed implementation, exposing the
transport of data also provides scope for direct optimisation of this transport.
This avenue of research is less well explored. In this paper we outline an auto-
mated process to reduce the volume of data movement through point-free code
through the systematic use of local transformations. We show that this process
is highly effective and describe the techniques we found useful.

1.1 Outline of This Paper

The next section outlines the context in which our optimisation process takes
place. Section 3 defines the broad strategies we applied in all parts of our op-
timisation process. Section 4 focuses on one part of the optimisation process -

the vector optimisation of map functions. Section 5 presents some of our results.
Section 6 outlines related work and we present our conclusions in Sect. 7.

2 Context

The work described in this paper is part of a of a prototype implementation of a
compiler mapping a simple functional language, Adl, to point-free code[2]. The
focus of this paper is the optimisation phase, which reduces the flow of data
through point-free programs. The optimiser was developed in CENTAUR[4],
using rules expressed in Natural Semantics[11]. A simple translator from Adl
to point-free form provides the input to the optimisation process. To provide a
context for this paper, we outline salient features of Adl, point-free code, and
the translation process next.

2.1 Adl

Adl is a small, strict, vector-oriented, functional language. Adl can be described
as point-wise because, like most languages, it supports the use of variables as a
means of storing data. Adl also provides standard operations for iteration - using
while, conditional execution - using if, and scoping - using let. Adl supports
implicit parallelism through second-order data-parallel operations over nestable
single-dimensional arrays, called vectors, including map, reduce and scan. Other
vector operations include a length operator (#), an index operator (!) and an
iota operation to dynamically allocate a contiguous vector of indices. Adl also
supports tuples of arbitrary arity and these are manipulated through pattern-
matching. Adl places no restrictions on the nesting of datatypes and operations.
Recursion is not supported in its initial implementation. Figure 1 shows an Adl
program that adds corresponding elements of two input vectors.

main (a: vof int, b: vof int)

:= let

f x := a!x + b!x

in

map(f,iota #a)

endlet

Fig. 1. An Adl program to add corresponding elements of two vectors

We have built a number of applications in Adl and found it to be a simple
and expressive language to use.

2.2 Point-Free Form

Our dialect of point-free form is derived from a point-free expression of the
theory of concatenate-lists in the Bird-Meertens-Formalism (BMF)[7]. In this
paper, we restrict ourselves to the functions required to express the translation
and optimisation of Adl, omitting point-free equivalents of reduce and scan,
which are beyond the immediate scope of this paper but discussed in[2].

Description Symbol(s) Semantics

Function Composition · (f · g) x = f(g x)

Vector map ∗ f ∗ [x0, . . . , xn−1] = [f x0, . . . , f xn−1]

All applied to for tuples (f1, . . . , fn)◦ (f1, . . . , fn)◦ x = (f1 x, . . . , fn x)

Identity function id id x = x

Tuple access nπi
nπi (a1, . . . , an) = ai

Constant functions K K x = K

Arithmetic operators +,−,÷,×, . . . + (x, y) = x + y etc.

Left distribute distl distl (a, [x0, . . . , xn−1]) = [(a, x0), . . . , (a, xn−1)]

Zip zip zip ([x0, . . . , xn−1], [y0, . . . , yn−1]) =
[(x0, y0), . . . , (xn−1, yn−1)]

Value repetition repeat repeat (a, n) = [

n times

︷ ︸︸ ︷

a, . . . , a]

Vector transpose transpose

transpose a =

b :
∀(i, j) ∈ indices(a), a(i, j) = b(j, i)∧
∀(i, j) ∈/ indices(a), a(i, j) = b(j, i) =⊥

Vector enumeration iota iota n = [0, 1, . . . , n − 1]

Vector length # # [x0, . . . , xn−1] = n

Vector indexing ! ! ([x0, . . . , xn−1], i) = xi

Vector selection select select (v, [x0, . . . , xn−1]) = [v!x0, . . . , v!xn−1]

Table 1. A selection of functions in point-free form

Most point-free programs produced by our compiler consist of sequences of
composed functions:

fn · fn−1 · . . . · f1

where input data enters at f1 and flows toward fn at the end of the program.
In the remainder of this paper, we refer to the beginning of the program (f1) as
the upstream end of the program and we refer to the end of the program (fn) as
the downstream end of the program.

Translation Translation from point-wise Adl to point-free form strips all vari-
able references from Adl code and replaces these with code to transport values
between operations. A detailed description of the translation process is given in
[2]. Similar translation processes have been defined in[5, 16, 13].

The translation process is conservative. It transports every value in the scope
of an operation to the doorstep of that operation. This approach, though simple
and robust, results in large surplus transport of data through translator-code.
This can be seen in the translation of the Adl code from Fig. 1:

(+ · (! · (π1 · π1, π2)
◦, ! · (π2 · π1, π2)

◦)◦) ∗ distl · (id, iota · #π1)
◦

where the distl operation distributes a copy of both input vectors to each instance
of the map function downstream. The aim of the optimiser is to transform pro-
grams in order to reduce this volume of copying. We outline the general strategy
of our optimiser next.

3 Optimisation Strategy

The optimiser works through the application of simple, semantics-preserving,
rules. Taken alone this set of rules is neither confluent or terminating1. More-
over, the large number of steps typically required for optimisation, coupled with
multiple rule and site choices at each step, leads to a case-explosion. To control
these factors we must apply our rules strategically.

Our main strategy is to propagate the optimisation process, on a localised
front2, from the downstream end of the program to the upstream end. The front
moves a step upstream by specialising functions immediately upstream of the
front with respect to the needs of the optimised code immediately downstream.
The front leaves a trail of optimised code in its wake as it steps upstream. The
specialisation that takes place in in each step consists of three phases:

Pre-Processing: applies sets of normalisation rules to code at the front. These
rules standardise the form of the code to make the application of key opti-
misation rules easier.

Key-Rule-Application: applies rules that substantially increase efficiency by
either eliminating functions responsible for making redundant copies of data,
or facilitating the removal of such functions further upstream.

Post-Processing: re-factors code to eliminate some small inefficiencies in-
troduced by pre-processing. and exposes functions for optimisation further
upstream.

The phases in each step are applied iteratively until the localised front of opti-
misation reaches the start of the program.

The broad pattern of processing we have just described applies to all optimi-
sation stages of our implementation. A full description of these stages is beyond
the scope of this paper. Instead, we illustrate the process by describing a key
part of optimisation, the vector optimisation of map functions.

1 Most rules could be applied in both directions which, trivially, leads to loops. It has
been observed [9] that confluence seems an implausible objective in the context of
program optimisation.

2 In our implementation, we delineate this front by associating function compositions
to make the functions on the front appear as an outermost term.

4 Vector Optimisation of Map Functions

The map operator is a second-order function that applies a parameter function
to an input vector. In point-free programs, copies of all data required by the pa-
rameter function must be explicitly routed to that function. Vector optimisation
of map functions reduces the amount of data that must be copied by changing
code so that it selectively routes vector data to its destination3. Specifically, we
seek to replace multiple applications of indexing operations on copies of vectors
with a single bulk selection operator to direct data to where it is needed. Two
general rules are used to achive this aim. For the purposes of explanation, we
first introduce two specialised versions of these rules:

(!) ∗ ·distl · (id, R)◦ ⇒ select · (id, R)◦ (1)

(! · (π1 · π1, π2 · π1)
◦) ∗ ·distl · (id, R)◦ ⇒

repeat · (! · (π1 · π1, π2 · π1)
◦, # · π2)

◦
· (id, R)◦

(2)

The code (id, R)◦, though not modified by these rules, is a product of the trans-
lation of all calls to map in Adl, and provides important context for later discus-
sions. The code R can take various forms but, given an input value, a, always
generates some vector of values [x0, . . . , xn−1].

Rule 1, above, fuses the vector indexing function and a corresponding distl

function into a select. If we factor out (id, R)◦ from both sides, the equivalence
underlying rule 1 can be informally stated:

(!) ∗ ·distl (a, [x0, . . . , xn−1]) =
select (a, [x0, . . . , xn−1]) =

[a!x0, . . . , a!xn−1]

The important difference between the two sides is that distl creates the, often
large, intermediate structure: [(a, x0), . . . , (a, xn−1)] whereas select avoids this.

Rule 2 applies where the code that carries out the the indexing (underlined)
accesses only the first element in each of the tuples in the vector produced by
distl4. Again, factoring out (id, R)◦, the equivalence underlying rule 2 can be
informally stated:

(! · (π1 · π1, π2 · π1)
◦) ∗ ·distl ((a, x), [y0, . . . , yn−1]) =

repeat · (! · (π1 · π1, π2 · π1)
◦, # · π2)

◦ ((a, x), [y0, . . . , yn−1]) =
[a!x, . . . , a!x]

where # [a!x, . . . , a!x] = # [y0, . . . , yn−1] = n. It should be noted that while
rule 2 reduces the size of intermediate structures, it also moves the indexing
function further upstream where it can be accessed by subsequent optimisation
steps.

3 The impact of this optimisation is most strongly felt in a distributed parallel context
where explicit routing of data is required and this routing incurs a cost.

4 We know this because both π1 · π1 and π2 · π1 first execute π1 which accesses the
first element of a tuple.

We emphasise that rules 1 and 2 are specialisations of corresponding, more
general, rules in our vector optimiser implementation. We present these rules
shortly, but first we describe the pre-processing steps that allow such rules to be
applied effectively.

4.1 Pre-processing

The pre-processing of code for vector optimisation of map functions consists of
three main stages:

1. Compaction: composed functions are coalesced to help reveal true data
dependencies and to bring functions of interest as far upstream as possible.

2. Isolation: functions are isolated from each other to allow them to be pro-
cessed individually.

3. Reorientation: transpose functions are added, where necessary, to reorient
the vectors to aid further processing.

We describe each of these stages in turn.

Compaction Compaction transforms code to minimise the number of com-
posed functions between functions of interest, in this case, indexing functions
and the code further upstream. When compaction is complete, index functions
are “on the surface” and exposed for further processing. As an example - prior
to compaction, the code:

(!.(π2, π1)
◦
· (π2, π1)

◦) ∗ ·distl · (id, R)◦

is not amenable to immediate optimisation because the contents of the map
function, underlined, is recognisable to neither rule 1 or 2. However, after com-
pacting: (π2, π1)

◦
· (π2, π1) to (π1, π2)

◦ the code takes the form:

(! · (π1, π2)
◦) ∗ ·distl · (id, R)◦

and rule 1 can be applied after eliminating the redundant identity (π1, π2)
◦.

Isolation Often, the combination of functions in code confounds the matching
of optimisation rules. For example the code:

(+ · (! · (π1 · π1, π2)
◦, ! · (π1 · π1, π2 · π1)

◦)◦) ∗ ·distl · (id, R)◦

matches neither rule 1 or 2. However, if the indexing components are isolated
from each other to produce the equivalent code:

(+) ∗ ·zip · ((! · (π1 · π1, π2)
◦) ∗ ·distl · (id, R)◦,

(! · (π1 · π1, π2 · π1)
◦) ∗ ·distl · (id, R)◦)◦

to which rule 2 can be applied immediately, and to which a more general form
of rule 1 can be applied.

Reorientation In code where indexing functions are nested it is sometimes the
case that the dimensions of the input vector are accessed in an order that defeats
immediate optimisation. For example, it is not instantly clear how to optimise:

(! · (! · (π1 · π1, π2)
◦, π1 · π2)

◦) ∗ ·distl · (id, R)◦

However, if we transpose the vector we can switch the functions used to create
the indices giving:

(! · (! · (transpose · π1 · π1, π2 · π1)
◦, π2)

◦) ∗ ·distl · (id, R)◦

which almost matches the specialised rule 1 and actually does match the corre-
sponding rule (rule 3) described next.

4.2 Key-Rule Application

The key vector optimisation rules rules are shown in Fig. 2. Rules 3 and 4

Select introduction

Not In oexp(f1, π2)

In oexp(f2, π2)

Opt(f2 ⇒ f ′

2)

(! · (f1, f2)
◦) ∗ ·distl · (id, R)◦ ⇒ select · (f1, f

′

2)
◦ · (id, R)◦

(3)

Repeat introduction

Not In oexp(f1, π2)

Not In oexp(f2, π2)

(! · (f1, f2)
◦) ∗ ·distl · (id, R)◦ ⇒ repeat · (! · (f1, f2)

◦, # · π2)
◦ · (id, R)◦

(4)

Fig. 2. Two key rules of the vector optimiser

correspond to the archetype rules 1 and 2 respectively.
Rules 3 and 4 are expressed in Natural Semantics. The parts above the line

in each rule are premises that must be true in order to apply the transformation
specified below the line. These rules capture a wider variety of code than their
respective archetypes and are thus more useful in an actual implementation.

Both rules hinge on calls to the predicates In oexp and Not In oexp which test
for the presence, and absence, respectively, of π2 as a most-upstream function
in f1 and f2. The presence of a π2 function as the most upstream functions
indicates a reference to the output value of R.

During the application of rules 3 and 4, the fate of the f2 function in each
rule differs. In rule 3, the truth of In oexp(f2, π2) implies that f2 references R.
This referencing means that at least some code in f2 cannot be carried upstream

of R for further processing. In light of this constraint, the recursive call to the
vector optimiser, Opt(f2 ⇒ f ′

2
), is made to exploit a last opportunity to, locally,

optimise f2 before the process moves upstream. In rule 4, f2 does not reference
the output of R and thus can be carried upstream of R for further processing.

On a related note, some thought about the premises of both rules reveals
that code such as:

(! · (! · (π1, π2)
◦, π2)

◦) ∗ ·distl · (id, R)◦

will match neither rule 3 or 4. In these cases we apply a default rule, not shown
here, leaves outer index function intact. The post-processing phase is then left to
salvage what it can from the code that generates its parameters for optimisation
upstream.

4.3 Post-processing

After the application of the key rules in the last section, code is often in no fit
state for immediate processing further upstream. It is the task of post-processing
to compact and combine optimisable code fragments to prepare them for the
next optimisation step. As an example of compaction, after applying rule 4 to
the code:

(! · (π1 · π1, π2 · π1)
◦) ∗ ·distl · (id, R)◦

we have:
repeat · (! · (π1 · π1, π2 · π1)

◦, # · π2)
◦
· (id, R)◦

where the functions of interest: ! ·(π1 ·π1, π2 ·π1)
◦, and # ·π2 are not in the most-

upstream section of code, ready for further processing. Post-processing compacts
these functions into (id, R)◦ producing the, more accessible, code:

repeat · (! · (π1, π2)
◦, # · R)◦

As an example of combination, the application of rules 3 and 4, plus com-
paction, to the code:

(+) ∗ ·zip · (((! · (π1 · π1, π2 · π1)
◦) ∗ ·distl · (id, R)◦,

! · (π1 · π1, π2)
◦) ∗ ·distl · (id, R)◦)◦

produces:
(+) ∗ ·zip · (repeat · (! · (π1, π2)

◦, # · R)◦,
select · (π1, R)◦)◦)◦

Subsequently, further post-processing combines the two zipped sections of code
to produce the more easily processed:

(+) ∗ ·distl · (! · (π1, π2)
◦, select · (π1, R)◦)◦

Note that the re-introduced distl function now transports just the required values
to downstream code rather than broadcasting copies of whole vectors.

This concludes our description of the vector optimisation of map. The code
resulting from vector optimisation has a significantly reduced flow of surplus vec-
tor elements. However, surplus flows of other values remain. Our implementation
reduces these flows during, much-simpler, subsequent passes of optimisation. A
discussion of these other passes is beyond the scope of this paper but their effects
are evident in the performance of code produced by the optimiser in its entirety.
We examine this performance next.

5 Results

We now examine the impact of the optimisation process on the performance of
point-free program code. After this, we briefly discuss the influence that point-
free form has on the design of the optimiser.

5.1 Performance Model

To measure the effect of data movement optimisation we created an instrumented
model for measuring execution time and space consumption on point-free code.
To keep the design of the model simple and consistent we implemented the
following basic strategy for memory allocation and deallocation:

– memory for each data element is allocated just prior to when it is needed.
– memory for each data element is de-allocated just after its last use.

Our model assigned unit costs to all scalar operations and unit costs to allocating
and to copying scalars. Vectors and tuples were treated as collections of scalars.

It must be noted that, when mapping point free code to imperative sequential
code there are optimisations that could be applied that our model doesn’t reflect.
However, in a distributed context, we have found that high data-transport costs
in this model map to high communications costs[1].

5.2 Experiments

We ran the translator and then the optimiser over a series of Adl programs
and used an implementation of the model above to compare the performance of
translator and optimiser code. As a benchmark, we hand-coded efficient solutions
in point-free form and ran these against the model too. The results of two of
these experiments are presented next.

Adding Corresponding Elements of Nested Vectors The source code
for map map addpairs.Adl is shown in Fig. 3(a). This program uses a nested
map operation to add corresponding elements of two nested input vectors. The
translator code, the optimiser code and the handed-coded point-free version are
shown in parts (b), (c) and (d) respectively. The translator code distributes large
amounts of data to the inner map function to be accessed by index functions. The

main (a: vof vof int, b: vof vof int)

:= let

f x :=

let

g y := a!x!y + b!x!y

in

map(g,iota #(a!x))

endlet

in

map(f,iota (# a))

endlet
(a)

((+ · (! · (! · (π1 · π1 · π1, π2 · π1)
◦, π2)

◦,
! · (! · (π2 · π1 · π1, π2 · π1)

◦, π2)
◦)◦) ∗ ·

distl · (id, iota · #·! · (π1 · π1, π2)
◦)◦ · id) ∗ ·

distl · (id, iota · # · π1)
◦ · id

(b)

((+) ∗ ·zip
·(select · (3π1,

3 π2)
◦, select · (3π3,

3 π2)
◦)◦·

(π1 · π1, iota · π2, π2 · π1)
◦) ∗ ·

zip · (((π2, π1)
◦) ∗ ·zip·

(select · (3π1,
3 π2)

◦, select · (3π3,
3 π2)

◦)◦,
(#) ∗ ·select · (3π3,

3 π2)
◦)◦·

(π1, iota · # · π2, π2)
◦ · (π2, π1)

◦

(c)

((+) ∗ ·zip·
(select · (π1 · π1, π2)

◦

select · (π2 · π1, π2)
◦)◦·

(id, iota · # · π1)
◦) ∗ ·

zip·
(select · (π1 · π1, π2)

◦

select · (π2 · π1, π2)
◦)◦·

(id, iota · # · π1)
◦

(d)

Fig. 3. Source code - part (a), translator code - part (b), optimiser code - part (c), and
hand-crafted code - part(d) for map map addpairs.Adl

optimiser code in part (c) has replaced all of the indexing operations by select

operations. The hand-coded version in part (d) has the same basic structure as
the code in part (c) but forms fewer intermediate tuples.

The performance of the three versions of point-free code, applied to a pair
of nested input vectors, is shown in Fig. 4. The translator code fares the worst

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 1000 2000 3000 4000 5000 6000 7000

sp
ac

e
(w

or
ds

)

time (in scalar operations)

translator
optimised

hand-coded

Fig. 4. Performance plots for map map addpair applied to the pair of ragged vectors:
([[1], [2, 3, 4], [5, 6], [], [7, 8, 9, 10]], [[1], [2, 3, 4], [5, 6], [], [7, 8, 9, 10]]) .

due to the cost of distributing aggregate values. The optimiser code exhibits
substantially better performance. The hand optimised version performs even
better, with a similar pattern of data allocation on a slightly smaller scale. Close
inspection of the code reveals that the optimiser has been more aggressive than
necessary in moving the # (length) function out of the inner-map function. This
resulted in extra code to transmit the output of the # that has now been moved
upstream. The movement wasn’t warranted in this case because the input vector
to this invocation of # had to be transmitted to the inner map function anyway.
This result indicates that there is scope for tempering the aggression of the
vector optimiser in certain cases.

A Simple Stencil Operation The source code for finite diff.Adl is shown
in Fig. 3(a). This program applies a very simple stencil operation to a one-
dimensional vector. It is a good example of the use of multiple indexing opera-
tions into a single vector and the use of arithmetic operators on vector indices.
The translator code, the optimiser code and the handed-coded point-free ver-
sion are shown in parts (b), (c) and (d) respectively. Again the translator code
distributes surplus data through the distl operations. The optimiser code in part
(c) has removed this distribution. The hand-coded solution in part (d) is similar
to the hand-coded version but avoids the use of repeat.

Figure 6 shows performance of the three versions of point-free code. Again,
the translator code is the worst-performing. The efficiencies of the optimised

main a: vof int :=

let

stencil x

:= a!x + a!(x-1) + a!(x+1);

addone x := x + 1;

element_index

:= map(addone,iota ((# a)-2))

in

map (stencil, element_index)

endlet

(a)

(+ · (+ · (! · (π1 · π1, π2)
◦,

! · (π1 · π1,− · (π2, 1)◦)◦)◦,
! · (π1 · π1, + · (π2, 1)

◦)◦)◦) ∗ ·
distl · (id, π2)

◦ · id·
(id, (+ · (π2, 1)◦) ∗ distl · (id, iota · − · (# · id, 2)◦)◦)◦

(b)

(+ · (+ · π1, π2)
◦) ∗ ·zip·

(zip·
(select,
select · (π1, (−) ∗ ·zip·

(id, repeat · (1, #)◦)◦ · π2)
◦)◦,

select · (π1, (+) ∗ ·zip · (id, repeat · (1, #)◦)◦ · π2)
◦)◦·

(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(c)

(+ · (π1 · π1, + · (π2 · π1, π2)
◦)◦) ∗ ·

zip · (zip · (π1 · π1, π2 · π1)
◦, π2)

◦·
((select,

select · (π1, (+ · (id, 1)◦) ∗ ·π2)
◦)◦,

select · (π1, (− · (id, 1)◦) ∗ ·π2)
◦)◦·

(id, (+ · (id, 1)◦) ∗ ·iota · − · (#, 2)◦)◦

(d)

Fig. 5. Source code - part (a), translator code - part (b), optimiser code - part (c), and
hand-crafted code - part(d) for finite diff.Adl

and hand-coded versions are very similar with the optimiser code very slightly
ahead on time and space performance. Close inspection of the code shows that
the optimiser code in part (c) has been more thorough in eliminating transport
of tuple elements in downstream parts of the code.

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

sp
ac

e
(w

or
ds

)

time (in scalar operations)

translator
optimised

hand-coded

Fig. 6. Performance plots for finite diff applied to a short one-dimensional vector.

5.3 Point-Free Form and Optimiser Design

The performance of code produced by the optimiser in the experiments presented
here, and in other experiments we have carried out, is encouraging. In addition to
these results we make the following general observations regarding the influence
of point-free form on optimiser design.

First, pre-processing, using normalisation rules, is an essential part of au-
tomatically processing point-free form. It is infeasible to write enough rules to
match code as-is, so code needs to be processed to match the rules. We applied,
and reused, normalisation rules quite frequently and in a variety of circumstances
to maximise the effect of other transformation rules.

Second, it pays to have interfaces. If there is a mismatch between the output
of one transformation component and the expected input of another, the cause
of the resulting error can be difficult to find. The use of interfaces, even on an in-
formal, ad-hoc, basis makes matching, and constructing compilation components
much less error-prone.

Last, it is difficult to write intelligent rules. It is not easy to trace depen-
dencies through, and then alter, at a distance, point-free code. It is easier to
propagate dependencies by local transformations to the code itself.

6 Related Work

There is a large body of work exploring program transformation in functional
notations. [17] summarises many of the important issues that arise during trans-
formation. The use and transformation of point-free programs was espoused in
[3]. A broad range of rules and techniques applicable to both point-free and
point-wise programs were developed with Bird-Meertens Formalism[7] we used
a number of the algebraic identities developed in this work in our optimiser.

The idea of making programs more efficient by reducing the intermediate data
produced is strongly related to concept of program fusion. Automated systems
have been developed to perform fusion[14, 10] in point-wise recursive definitions.
Our work, while using some of the rules derived by research into fusion, is more
specialised in its purpose. However, there remains broad scope for further appli-
cations of techniques from the work above in refinements of our optimiser.

Point-free notation has been used in a few experiments and implementa-
tions including FP*[21] and EL*[16]. Some early experiments with transforming
point-free code are described in[12]. More recently a complete translation pro-
cess from recursive functions in Haskell to point-free form has been defined[5].
However, none of these implementations perform data movement optimisation
to the extent of the implementation described here5.

7 Conclusions and Future Work

We have described an optimisation process to reduce data movement through
point-free code. We have shown that this process is effective in significantly re-
ducing the flow of data through such programs. This process is incremental with
the program itself serving as the sole repository of the state of the transformation
process.

We envisage three major improvements to the implementation as defined so
far. First, the system could be made more extensible by the formal definition of
syntax interfaces for transformation components as in[19]. Second, the volume of
transformation rules may be significantly reduced by separating rule application
strategies from the rewrite rules themselves[20]. Last, an efficient mapping of
point free code to imperative code on sequential architectures needs to be defined,
work toward this goal is underway[15].

To conclude, optimisation in point free form is a highly effective process that
requires different strategies to more traditional approaches. Like all optimisation,
this process is open-ended and much interesting work remains to be done.

References

1. Alexander, B. , Wendelborn, A. L. 2004, Automated Transformation of BMF Pro-

grams, The First International Workshop on Object Systems and Software Archi-
tectures., pp. 133-141,
URL: http://www.cs.adelaide.edu.au/ wossa2004/HTML/19-brad-2.pdf

2. Alexander, B. 2006, Compilation of Parallel Applications via Automated Transfor-

mation of BMF Programs, Phd. Thesis, University of Adelaide,
URL: http://www.cs.adelaide.edu.au/ brad/thesis/main.pdf

3. Backus, J. 1978, Can Programming Be Liberated from the von Neumann Style? A

functional Style and Its Algebra of Programs, ‘Communications of the ACM’, Vol. 21,
No. 8, pp. 613 – 641.

5 FP* performs some optimisation as code is being mapped to an imperative language
but explicit data transfer information, useful for mapping to a distributed machine,
is lost in the process.

4. Borras, P., Clément, D., Despeyroux, Th., Incerpi, J., 1989 , Kahn, G., CENTAUR:

the system, SIGSOFT software engineering notes / SIGPLAN: SIGPLAN notices,
Vol. 24, No. 2, The ACM.

5. Cunha, A., Pinto, S. P., , Proenca, J., 2005, Down with Variables, Technical report,
No. DI-PURe-05.06.01.

6. Crooke, D. C., 1999, Practical Structured Parallelism Using BMF, Thesis, University
of Edinburgh.

7. Gibbons, J., 1994, An introduction to the Bird-Meertens Formalism, ‘New Zealand
Formal Program Development Colloquium’, Hamilton, NZ.

8. Hamdan, M., 2000 , A Combinational Framework for Parallel Programming Using

Algorithmic Skeletons, Thesis, Department of Computing and Electrical Engineer-
ing. Heriot-Watt University.

9. Jones, S., Hoare, T. and T. Hoare., Tolmach, A., 2001,Playing by the rules: rewriting

as a practical optimisation technique, ACM SIGPLAN Haskell Workshop.
10. Johann, P., Visser, E., 1997 , Warm fusion in Stratego: A case study in the genera-

tion of program transformation systems, Technical report, Department of Computer
Science, Universiteit Utrecht, 1999.

11. Kahn, G., 1987 , Natural Semantics, Fourth Annual Symposium on Theoretical As-
pects of Computer Science, Lecture Notes in Computer Science, Vol. 247, Springer-
Verlag.

12. Martin, U. , Nipkow, T., 1990 , Automating Squiggol, Programming Concepts and
Methods, pp. 233–247, Eds. Broy, M., Jones, C. D., North-Holland.

13. Mauny, M. , Ascander Suarez, 1986 , Implementing functional languages in the

Categorical Abstract Machine,
LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional program-
ming, pp. 266–278, ACM Press.

14. Onoue, Y., Hu, Z., Takeichi, M., , Iwasaki H. 1997 , A calculational fusion system

HYLO, ‘Proceedings of the IFIP TC 2 WG 2.1 international workshop on Algorith-
mic languages and calculi’, pp. 76–106, Chapman & Hall, Ltd.

15. Pettge, S. 2005, A Fast Code Generator for Point-Free Form, Hons. Thesis, Uni-
versity of Adelaide,
URL: http://www.cs.adelaide.edu.au/ brad/students/seanp.pdf

16. Rao, P. , Walinsky, C., 1993, An equational language for data-parallelism, Proceed-
ings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 112–118, ACM Press.

17. Sands, D., 1996, Total correctness by local improvement in the transformation of

functional programs, ‘ACM Trans. Program. Lang. Syst.’, Vol. 18, No. 2.
18. Skillicorn, D. B. , Cai, W., 1994, Equational code generation: Implementing cate-

gorical data types for data parallelism, TENCON ’94, Singapore, IEEE.
19. de Jonge, M. , Visser, J., 2001, Grammars as Contracts, Lecture Notes in Computer

Science, Vol. 2177, Springer-Verlag.
20. Visser, E., 2001, Stratego: A Language for Program Transformation Based on

Rewriting Strategies,
RTA ’01: Proceedings of the 12th International Conference on Rewriting Techniques
and Applications, pp. 357–362, Springer-Verlag.

21. Walinksy, C., Banerjee, D., 1994, A Data-Parallel FP Compiler, Journal of Parallel
and Distributed Computing, Vol. 22, pp. 138–153.

