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Abstract

Evolutionary computation techniques have been receiving increasing attention regarding their potential
as optimization techniques for complex problems. Recently these techniques were applied in the area
of industrial engineering; the most-known applications include scheduling and sequencing in manufac-
turing systems, computer-aided design, facility layout and location problems, distribution and trans-
portation problems, and many others.

Industrial engineering problems usually are quite hard to solve due to a high complexity of the
objective functions and a signi�cant number of problem-speci�c constraints; often an algorithm to
solve such problem requires incorporation of some heuristic methods.

In this paper we concentrate on constraint handling heuristics for evolutionary computation tech-
niques. This general discussion is followed by three test case studies: truss structure optimization
problem, design of a composite laminated plate, and the unit commitment problem. These are typical
highly constrained engineering problems and the methods discussed here are directly transferrable to
industrial engineering problems.

1 Introduction

Evolutionary computation techniques have drawn much attention as optimization methods in the last
two decades [33, 39, 16]. Evolutionary computation algorithms are stochastic optimization methods;
they are conveniently presented using the metaphor of natural evolution: a randomly initialized pop-
ulation of individuals (set of points of the search space at hand) evolves following a crude parody of
the Darwinian principle of the survival of the �ttest. New individuals are generated using simulated
genetic operations such as mutation and crossover. The probability of survival of the newly generated
solutions depends on their �tness (how well they perform with respect to the optimization problem
at hand): the best are kept with a high probability, the worst are rapidly discarded. Three main
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algorithmic trends are based on such an evolutionary scheme: Genetic Algorithms (GA) [24, 18],
Evolutionary Strategies (ES) [54, 1] and Evolutionary Programming (EP) [15, 16].

From the optimization point of view, one of the main advantages of evolutionary computation
techniques is that they do not have much mathematical requirements about the optimization prob-
lem. They are 0{order methods (all they need is an evaluation of the objective function), they can
handle nonlinear problems, de�ned on discrete, continuous or mixed search spaces, unconstrained
or constrained. Moreover, the ergodicity of the evolution operators makes them global in scope (in
probability).

Many industrial engineering activities involve unstructured, real-life problems that are hard to
model, since they require inclusion of unusual factors (from accident risk factors to esthetics). Other
industrial engineering problems are complex in nature: job shop scheduling, timetabling, traveling
salesman or facility layout problems are examples of NP-complete problems. In both cases, evolu-
tionary computation techniques represent a potential source of actual breakthroughs. Their ability
to provide many near-optimal solutions at the end of an optimization run enables to choose the best
solution afterwards, according to criteria that were either inarticulate from the expert, or badly mod-
eled. Evolutionary algorithms can be made e�cient because they are exible, and relatively easy to
hybridize with domain-dependent heuristics. Those features of evolutionary computation have already
been acknowledged in the �eld of industrial engineering, and many applications have been reported
(see, for example, [18, 47, 57]).

A vast majority of industrial engineering optimization problems are constrained problems. The
presence of constraints signi�cantly a�ects the performance of any optimization algorithm, including
evolutionary search methods [34]. This paper focuses on the issue of constraints handling in evolution-
ary computation techniques. The general way of dealing with constraints | whatever the optimization
method | is by penalizing infeasible points. However, there are no guidelines on designing penalty
functions. Some suggestions for evolutionary algorithms are given in [50], but they do not general-
ize. Other techniques that can be used to handle constraints in evolutionary computation techniques
are more or less problem dependent. For instance, the knowledge about linear constraints can be
incorporated into speci�c operators [37], or a repair operator can be designed that projects infeasible
points onto feasible ones [42]; Section 2 provides a general overview of constraints-handling methods
for evolutionary computation techniques. Each of the next three sections presents a speci�c case study
of both an engineering constrained optimization problem and a constraint handling algorithm for evo-
lutionary algorithms. Section 3 introduces a truss structure optimization problem, for which results
are obtained using a constraint handling method based on an evolutionary sampling of the feasible
region; Section 4 presents an evolutionary method for the design of composite laminated plate, using
the segregated genetic algorithm, where the di�cult task of adjusting penalty parameters is avoided
by using two sub-populations, evolving according to two slightly di�erent �tness functions; Section
5 is devoted to the unit commitment problem, a highly-constrained nonlinear optimization problem.
Section 6 concludes the paper.
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2 Evolutionary Computation and Constrained Optimization

In this section we discuss several methods for handling feasible and infeasible solutions in a population;
most of these methods emerged quite recently. Only a few years ago Richardson et al. [50] claimed:
\Attempts to apply GA's with constrained optimization problems follow two di�erent paradigms (1)
modi�cation of the genetic operators; and (2) penalizing strings which fail to satisfy all the constraints."
This is no longer the case as a variety of heuristics have been proposed. Even the category of penalty
functions consists of several methods which di�er in many important details on how the penalty
function is designed and applied to infeasible solutions. Other methods maintain the feasibility of
the individuals in the population by means of specialized operators or decoders, impose a restriction
that any feasible solution is `better' than any infeasible solution, consider constraints one at the time
in a particular linear order, repair infeasible solutions, use multiobjective optimization techniques,
are based on cultural algorithms (i.e., algorithms with an additional layer of beliefs which undergoes
evolution as well [48]), or rate solutions using a particular co-evolutionary model (i.e., model with
more than one population, where the �tness of an individual in one population depends on the current
state of evolution in the other population [46]).

2.1 Rejection of infeasible individuals

This \death penalty" heuristic is a popular option in many evolutionary techniques (e.g., evolution
strategies). Note that rejection of infeasible individuals o�ers a few simpli�cations of the algorithm:
for example, there is no need to evaluate infeasible solutions and to compare them with feasible ones.

The method of eliminating infeasible solutions from a population may work reasonably well when
the feasible search space is convex and it constitutes a reasonable part of the whole search space (e.g.,
evolution strategies do not allow equality constraints since with such constraints the ratio between
the sizes of feasible and infeasible search spaces is zero). Otherwise such an approach has serious
limitations. For example, for many search problems where the initial population consists of infeasible
individuals only, it might be essential to improve them (as opposed to rejecting them). Moreover,
quite often the system can reach the optimum solution easier if it is possible to \cross" an infeasible
region (especially in non-convex feasible search spaces).

2.2 Penalizing infeasible individuals

This is the most common approach in the genetic algorithms community. The domain of the objective
function f is extended; the approach assumes that

eval(p) = f(p)�Q(p),

where Q(p) represents either a penalty for infeasible individual p, or a cost for repairing such an
individual. The major question is, how should such a penalty function Q(p) be designed? The intuition
is simple: the penalty should be kept as low as possible, just above the limit below which infeasible
solutions are optimal (so-called minimal penalty rule) [29]. However, it is di�cult to implement this
rule e�ectively.
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The relationship between infeasible individual `p' and the feasible part of the search space plays a
signi�cant role in penalizing such individuals: an individual might be penalized just for being infeasible,
the `amount' of its infeasibility is measured to determine the penalty value, or the e�ort of `repairing'
the individual might be taken into account.

Several researchers studied heuristics on design of penalty functions. Some hypotheses were for-
mulated [50]:

� \penalties which are functions of the distance from feasibility are better performers than those
which are merely functions of the number of violated constraints,

� for a problem having few constraints, and few full solutions, penalties which are solely functions
of the number of violated constraints are not likely to �nd solutions,

� good penalty functions can be constructed from two quantities, the maximum completion cost
and the expected completion cost,

� penalties should be close to the expected completion cost, but should not frequently fall below
it. The more accurate the penalty, the better will be the solutions found. When penalty often
underestimates the completion cost, then the search may not �nd a solution."

and in [55]:

� \the genetic algorithm with a variable penalty coe�cient outperforms the �xed penalty factor
algorithm,"

where a variability of penalty coe�cient was determined by a heuristic rule.

This last observation was further investigated by Smith and Tate [56]. In their work they ex-
perimented with dynamic penalties, where the penalty measure depends on the number of violated
constraints, the best feasible objective function found, and the best objective function value found.

For numerical optimization problems,

optimize f(X), X = (x1; : : : ; xn) 2 Rn,

where

gj(X) � 0, for j = 1; : : : ; q, and hj(X) = 0, for j = q + 1; : : : ; m,

penalties usually incorporate degrees of constraint violations. Most of these methods use constraint
violation measures fj (for the j-th constraint) for the construction of the eval; these functions are
de�ned as

fj(X) =

(
maxf0; gj(X)g; if 1 � j � q

jhj(X)j; if q + 1 � j � m

For example, Homaifar et al. [25] assume that for every constraint we establish a family of intervals
that determines appropriate penalty values. A similar approach is presented in Section 5 of this paper
(for the unit commitment problem).
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It is also possible (as suggested in [55] to adjust penalties in a dynamic way, taking into account
the current state of the search or the generation number. For example, Joines and Houck [26] assumed
dynamic penalties; individuals are evaluated (at the iteration t) by the following formula:

eval(X) = f(X) + (C � t)�
Pm

j=1 f
�
j (X),

where C, � and � are constants.

Michalewicz and Attia [36] considered a method based on the idea of simulated annealing: the
penalty coe�cients are changed once in many generations (after the convergence of the algorithm to
a local optima). At every iteration the algorithm considers active constraints only, the pressure on
infeasible solutions is increased due to the decreasing values of the temperature of the system.

A method of adapting penalties was developed by Bean and Hadj-Alouane [4, 20]. As the previous
method, it uses a penalty function, however, one component of the penalty function takes a feedback
from the search process. Each individual is evaluated by the formula:

eval(X) = f(X) + �(t)
Pm

j=1 f
2
j (X),

where �(t) is updated every generation t in the following way:

�(t+ 1) =

8><
>:

(1=�1) � �(t); if case#1
�2 � �(t); if case#2
�(t); otherwise;

where cases #1 and #2 denote situations where the best individual in the last k generation was always
(case #1) or was never (case #2) feasible, �1; �2 > 1, and �1 6= �2 (to avoid cycling).

Yet another approach was proposed recently by Le Riche et al. [29]. The authors designed a
(segregated) genetic algorithm which uses two values of penalty parameters (for each constraint)
instead of one; these two values aim at achieving a balance between heavy and moderate penalties by
maintaining two subpopulations of individuals. The population is split into two cooperating groups,
where individuals in each group are evaluated using either one of the two penalty parameters. This
method is discussed in detail in Section 4 of this paper.

Some researchers [47, 40] reported good results of their evolutionary algorithms, which worked
under the assumption that any feasible individual was better than any infeasible one. Powell and
Skolnick [47] applied this heuristic rule for the numerical optimization problems: evaluations of feasible
solutions were mapped into the interval (�1; 1) and infeasible solutions|into the interval (1;1) (for
minimization problems). Michalewicz and Xiao [40] experimented with the path planning problem
and used two separate evaluation functions for feasible and infeasible individuals. The values for
infeasible solutions were increased (i.e., made less attractive) by adding such a constant, so that the
best infeasible individual was worse that the worst feasible one.

It seems that the appropriate choice of the penalty method may depend on (1) the ratio between
sizes of the feasible and the whole search space, (2) the topological properties of the feasible search
space, (3) the type of the objective function, (4) the number of variables, (5) number of constraints,
(6) types of constraints, and (7) number of active constraints at the optimum. Thus the use of
penalty functions is not trivial and only some partial analysis of their properties is available. Also,
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a promising direction for applying penalty functions is the use of adaptive penalties: penalty factors
can be incorporated in the chromosome structures in a similar way as some control parameters are
represented in the structures of evolution strategies and evolutionary programming.

2.3 Maintaining feasible population by special representations and genetic oper-
ators

One reasonable heuristic for dealing with the issue of feasibility is to use specialized representation and
operators to maintain the feasibility of individuals in the population. During the last decade several
specialized systems were developed for particular optimization problems; these systems use a unique
chromosomal representations and specialized `genetic' operators which alter their composition. Some
of such systems were described in [12]; other examples include Genocop for optimizing numerical func-
tions with linear constraints and Genetic-2N [33] for nonlinear transportation problem. For example,
Genocop assumes linear constraints only and a feasible starting point (or feasible initial population).
A closed set of operators maintains feasibility of solutions. For example, when a particular component
xi of a solution vector X is mutated, the system determines its current domain dom(xi) (which is a
function of linear constraints and remaining values of the solution vector X) and the new value of
xi is taken from this domain (either with at probability distribution for uniform mutation, or other
probability distributions for non-uniform and boundary mutations). In any case the o�spring solution
vector is always feasible. Similarly, arithmetic crossover of two feasible solution vectors X and Y
yields always a feasible solution (for 0 � a � 1) in convex search spaces (the system assumes linear
constraints only which imply convexity of the feasible search space).

Often such systems are much more reliable than any other evolutionary techniques based on penalty
approach. This is a quite popular trend: many practitioners use problem-speci�c representations and
specialized operators in building very successful evolutionary algorithms in many areas; these in-
clude numerical optimization, machine learning, optimal control, cognitive modeling, classic operation
research problems (traveling salesman problem, knapsack problems, transportation problems, assign-
ment problems, bin packing, scheduling, partitioning, etc.), engineering design, system integration,
iterated games, robotics, signal processing, and many others.

2.4 Repair of infeasible individuals

Repair algorithms enjoy a particular popularity in the evolutionary computation community: for many
combinatorial optimization problems (e.g., traveling salesman problem, knapsack problem, set covering
problem, etc.) it is relatively easy to `repair' an infeasible individual. Such a repaired version can be
used either for evaluation only, or it can also replace (with some probability) the original individual
in the population.

The weakness of these methods is in their problem dependence. For each particular problem a
speci�c repair algorithm should be designed. Moreover, there are no standard heuristics on design of
such algorithms: usually it is possible to use a greedy repair, random repair, or any other heuristic
which would guide the repair process. Also, for some problems the process of repairing infeasible
individuals might be as complex as solving the original problem. This is the case for the nonlinear
transportation problem [33], most scheduling and timetable problems, and many others.
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On the other hand, the recently completed Genocop III system [38] for constrained numerical
optimization (nonlinear constraints) is based on repair algorithms. Genocop III incorporates the
original Genocop system [33] (which handles linear constraints only), but also extends it by maintaining
two separate populations, where a development in one population inuences evaluations of individuals
in the other population. The �rst population Ps consists of so-called search points which satisfy
linear constraints of the problem; the feasibility (in the sense of linear constraints) of these points
is maintained by specialized operators (as in Genocop). The second population, Pr , consists of fully
feasible reference points. These reference points, being feasible, are evaluated directly by the objective
function, whereas search points are \repaired" for evaluation. The �rst results are very promising [38].

2.5 Replacement of individuals by their repaired versions

The question of replacing repaired individuals is related to so-called Lamarckian evolution, which
assumes that an individual improves during its lifetime and that the resulting improvements are
coded back into the chromosome.

Recently Orvosh and Davis [42] reported a so-called 5%-rule: this heuristic rule states that in
many combinatorial optimization problems, an evolutionary computation technique with a repair
algorithm provides the best results when 5% of repaired individuals replace their infeasible originals.
In continuous domains, a new replacement rule is emerging. As mentioned earlier, the Genocop III
system for constrained numerical optimization problems with nonlinear constraints is based on repair
approach. The �rst experiments (based on 10 test cases which have various numbers of variables,
constraints, types of constraints, numbers of active constraints at the optimum, etc.) indicate that
the 15% replacement rule is a clear winner: the results of the system are much better than with either
lower or higher values of the replacement rate.

At present, it seems that the `optimal' probability of replacement is problem-dependent and it
may change over the evolution process as well. Further research is required for comparing di�erent
heuristics for setting this parameter, which is of great importance for all repair-based methods.

2.6 Use of decoders

Decoders o�er an interesting option for all practitioners of evolutionary techniques. In these techniques
a chromosome \gives instructions" on how to build a feasible solution. For example, a sequence of
items for the knapsack problem can be interpreted as: \take an item if possible"|such interpretation
would lead always to feasible solutions. However, it is important to point out that several factors
should be taken into account while using decoders. Each decoder imposes a relationship T between a
feasible solution and decoded solution.

It is important that several conditions are satis�ed: (1) for each feasible solution s there is a decoded
solution d, (2) each decoded solution d corresponds to a feasible solution s, and (3) all feasible solutions
should be represented by the same number of decodings d. Additionally, it is reasonable to request
that (4) the transformation T is computationally fast and (5) it has locality feature in the sense that
small changes in the decoded solution result in small changes in the solution itself. An interesting
study on coding trees in genetic algorithm was reported by Palmer and Kershenbaum [45], where the
above conditions were formulated.
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2.7 Separation of individuals and constraints

This is a general and interesting heuristic. The �rst possibility would include utilization of multi-
objective optimization methods, where the objective function f and constraint violation measures fj
(for m constraints) constitute a (m+ 1)-dimensional vector ~v:

~v = (f; f1; : : : ; fm).

Using some multi-objective optimization method, we can attempt to minimize its components: an
ideal solution x would have fj(x) = 0 for 1 � i � m and f(x) � f(y) for all feasible y (minimization
problems). A successful implementation of similar approach was presented recently in [57].

Another approach was recently reported by Paredis [46]. The method (described in the context of
constraint satisfaction problems) is based on a co-evolutionary model, where a population of potential
solutions co-evolves with a population of constraints: �tter solutions satisfy more constraints, whereas
�tter constraints are violated by more solutions.

Yet another heuristic is based on the idea of handling constraints in a particular order; Schoenauer
and Xanthakis [52] called this method a \behavioral memory" approach. Section 3 of this paper
describes this approach in detail.

It is also possible to incorporate the knowledge of the constraints of the problem into the belief space
of cultural algorithms [48, 49]. The general intuition behind belief spaces is to preserve those beliefs
associated with \acceptable" behavior at the trait level (and, consequently, to prune away unacceptable
beliefs). The acceptable beliefs serve as constraints that direct the population of traits. It seems that
the cultural algorithms may serve as a very interesting tool for numerical optimization problems, where
constraints inuence the search in a direct way (consequently, the search in constrained spaces may
be more e�cient than in unconstrained ones!).

3 Truss Structure Optimization Problem

This section presents the problem of discrete optimization of truss structures using genetic algorithms.
The original issues of this section are the constraint handling technique, based on the \behavioral mem-
ory" paradigm, and the experimental comparison of the performances of GAs on both the continuous
and the discrete version of the same problem.

3.1 Problem description

3.1.1 Truss structure design

Truss structure optimization is a well-known problem of structural mechanics [22]. In its simplest
form, the objective structure is made of bars linking �xed nodes, and the design variables are the
areas of the sections of the bars (the mechanical behavior of bars only depends on their section areas).

The objective of the optimization is to �nd the structure of minimal weight meeting some given
constraints on the maximal displacement or/and the maximal stress under prescribed loadings.
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Figure 1: The 10-bars and 25-bars benchmark truss structures

Figure 1 shows the test cases considered in this section. Both are classical examples, used as a
benchmarks for all truss structure optimization algorithms: the �rst problem is a bidimensional 10-
bars truss, involving 10 design variables; in the second problem, a 3-dimensional truss is considered,
made of 25 bars, but due to a priori symmetry conditions, only 7 independent variables are considered.
Table 1 gives the mechanical parameters of the bars, together with the loadings considered during the
optimization.

elasticity modulus = 1:0� 104 ksi
density of material = 0:10 lb=in3

:

stress limits = �25:0 ksi
number of loadings = 1 (shown in kips)

direction of loading
loading # Node x1 x2 x3

1
2
4

0.0
0.0

-100.0
-100.0

0.0
0.0

elasticity modulus = 1:0� 104 ksi
density of material = 0:10 lb=in3

:

stress limits = �40 ksi
number of loadings = 1 (shown in kips)

direction of loading
loading # Node x1 x2 x3

1
3
4

0.0
0.0

20.0
-20.0

-5.0
-5.0

Table 1: Mechanical parameters, constraints and loadings for both benchmark problems

3.1.2 The discrete problem

When the areas of the sections of the bars can take continuous values (in a prescribed interval), the
problem of truss structure optimization, as stated in the preceding subsection, can be addressed by
many deterministic optimization methods, based on gradient descent and projection operators for
constraint handling (see [14] among others). But when a mechanical engineer faces such a problem,
the actual solution must be technologically feasible: the bars have to be taken from suppliers stock,
and the areas of the sections can only take a �nite number of discrete values (the situation is even
worse in the case of the beam model, as only a �nite number of section shapes are available). A
possible solution is to compute the solution of the continuous problem, and to take the closest possible
values in the stock. But it is well-known that the discrete optimum might well be missed by such a
simple strategy.
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3.2 Constraints handling through behavioral memory

3.2.1 The behavioral memory

The \behavioral memory" paradigm, �rst introduced by De Garis [17], relies on the assumption that
a population that has undergone arti�cial evolution contains more information than just the location
of the point having the highest �tness: the localization of the whole population somehow witnesses
the history of the population, how it did behave while evolving under the pressure due to the �tness
function at hand, hence giving indirect insight about the �tness landscape. For instance, the mean
distance between individuals can be an indication of the steepness of the �tness function around
optimal value, giving hints on the stability of that solution. On the opposite, the existence of di�erent
clusters is a sign of the multi-modality of the �tness function.

The basic idea of behavioral memory-based evolution is to use a population resulting from a �rst
�tness-driven evolution as the starting point for a second evolution, using another �tness function.
This second evolution is biased by the information contained in its non-random initial population.
Hopefully, a good choice of the �rst �tness function can help to �nd a good optimum to the second
�tness function.

A common use of such iterated scheme amounts to gradually include more and more �tness cases
in the computation of the �tness (e.g., more and more test points in regression problems). It has also
been applied with completely di�erent successive �tness functions [17, 53]. And it can be applied to
handle constraints [52], as will be demonstrated in the following subsection.

One of the key issues for such an iterated scheme is the genetic diversity: if the population that
has evolved in the context of the �rst �tness function has converged, the bias induced by using it
as a starting point for the second evolution is too strong, and this second evolution reduces to a
coupling between a local search (in the small region where the population is located) and hazardous
random search: Only a lucky mutation can help escaping the (probably local) minimum. It is of
utter importance to preserve the diversity in the population during the �rst evolution. Many schemes
have been proposed to that aim, usually in the context of multi-modal function optimization. A good
review of these schemes can be found in [31]. The sharing scheme (see [19] for details) has been used
in this paper.

3.2.2 Iterated handling of constraints

The ideal way of handling constraints is to have the search space limited to the feasible space. In some
cases, a suitable change of variables can transform the constraint problem at hand in such a desirable
way [37]. But on the other hand, the main di�culty in many (deterministic) methods of constraint
problem solving is to �nd even one feasible starting point.

The basic idea underlying the behavioral memory-based constraint handling algorithm (BMCHA)
is to evolve the same population using di�erent successive �tnesses to sample the feasible region, i.e.,
get a population of feasible points, regardless of the objective function at hand. It is then possible to
use a standard GA in the feasible region to perform the optimization task on the objective function,
throwing away the infeasible points by giving them zero �tness (death penalty; see section 2.1).
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Figure 2: Flow-chart of behavioral memory-based constraint handling algorithm

Suppose the optimization problem is the following:(
max f(x); x 2 E
gi(x) � 0 for i 2 [0; n]

De�ne Ci(x) = maxfgi(x); 0g; x 2 E; i 2 [0; n] and let M t
i be the maximum value of Ci in the

population at generation t of step i. Figure 2 shows the ow chart of the BMCHA, which will now be
detailed.

Each one of the �rst steps of the algorithm is devoted to the satisfaction of a single constraint -
while ensuring that the population remains feasible for the constraints used in the preceding steps. So
the �tness for step i has to be a decreasing function of the violation Ci of the ith constraint. Moreover,
all feasible points must have the same �tness to prevent any convergence toward a particular feasible
point. Finally, the maximum of these violations M t

i over the current population (t is the generation
counter) is computed, and the �tness of an individual which is feasible for the constraints 1; : : : ; i� 1
is set to M t

i � Ci. Infeasible points for constraints 1; : : : ; i� 1 are assigned null �tness, and will be
discarded by the following selection step. Step i ends when a large enough part of the population
(ratio � %, user-supplied parameter) is feasible for constraint i. As stated above, the sharing scheme
is used throughout these �rst steps to keep the diversity of the population as large as possible.

The population after step n (the number of constraints) is then made of � % of points which are
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feasible for the problem at hand (i.e. satisfy all constraints). The last step addresses the optimization
of the objective function f in a standard way, except that the infeasible points are discarded (see
section 2.1) by being assigned null �tness. Note the use of the sharing scheme is not necessary in this
last step.

3.3 Results

This subsection presents results obtained using the BMCHA on the truss structure optimization
problem of section 3.1. More details can be found in [51].

3.3.1 Experimental settings

The GA used for these experiments is a home made package based on standards: stochastic remainder
selection, linear �tness scaling with selective pressure of 2 [18], real encoding of the design variables,
with linear cross-over [33] and ES-like Gaussian mutation [54]. In the discrete case, all oating point
numbers are rounded to the nearest authorized value after application of the operators. One single
step is used to handle the constraints (only constraints on the stress are considered), and the switch
parameter � is set to 80%.

3.3.2 Comparative results

Tables 2 and 3 present the results obtained for both problems (the 10 bars and 25 bars structures), for
both the benchmark continuous problem and a discretized version, where only 36 values were allowed
for the areas of the bars. These 36 values included the optimal values found by the gradient-like
method in [22].

�V Section areas per bar
Pb Gen. (%) 1 2 3 4 5 6 7 8 9 10

Disc. 487 0 5.948 .1 10.052 3.948 .1 2.052 8.559 2.754 5.583 .1

Cont. 4000 9.7 6.465 .279 9.531 3.837 .827 2.179 7.823 4.192 5.428 .409

Table 2: Results for the 10-bars problem. Population size = 100

�V Section areas per bar group
Pb Gen. (%) 1 2 to 5 6 to 9 10 to 13 14 to 17 18 to 21 22 to 25

Disc. 176 0 .1 .3446 .4968 .1 .1 .308 .1

Cont. 2000 27 .361 .487 .438 .151 .1 .274 .505

Table 3: Results for the 25-bars problem. Population size = 70

The results are averages over 10 independent runs: in all runs, the discrete solution was found
exactly. The average number of generations needed to reach the optimum is indicated in the tables. For
the continuous case, good solutions were found, but a maximum number of generations was prescribed,
as the exact values will not be reached exactly by that type of GA.
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3.3.3 Discussion

The �rst important conclusion from these experiments is the ability for evolutionary algorithms to
handle both discrete and continuous versions of the same problem with only minor changes in the cross-
over and mutation operators. From the point of view of deterministic methods, the two problems look
completely di�erent, and the same kind of work (tailor a method to a problem) has to be done twice.

Of course, the results for the continuous problem are not very accurate. But a simple hill-climbing
method should be used at the end of any evolutionary method, to locate the nearest local optimum,
which hopefully is global. Furthermore, the evolutionary method requires a computational e�ort about
100 times larger than the gradient-based method: it is clear on that case that the latter method should
be used.

Regarding now the constraint handling method, it is fair to say that we did succeed also using a
simple penalty method, after a little tuning of the penalty parameter. But fair comparisons between
the two approaches are very di�cult to perform, as the e�ort can only be measured in terms of engineer
time. In all runs of the discrete problem, the population reached the feasibility threshold in less than
50 generations.

It is clear than the BMCHA is not a universal method for constraint handling. If the feasible region
is made of discrete points, for instance, it will not give any result. And the unavoidable genetic drift
will certainly degrade its performances in problems with a large number of constraints. Moreover,
the results seem to depend on the order in which the constraints are presented to the algorithm.
Nevertheless, we believe that it can be useful in cases where the feasible region is \large but sparse"
in the search space, being fairly easy to implement and tune.

4 Design of a Composite Laminated Plate

In this section, the problem of minimizing the weight of a composite laminated plate subjected to
various failure constraints is considered. The optimization is carried out using an evolutionary algo-
rithm where constraints are accounted for through a double series of penalty functions, the segregated
genetic algorithm or SGGA [29].

4.1 Problem description

4.1.1 Stacking sequence design

Composite materials typically consist of �bers made of sti� materials, such as graphite, embedded in
a soft matrix, such as epoxy resin. Their high strength-to-weight and sti�ness-to-weight ratios make
them attractive for aerospace applications. The simply-supported laminated plate shown in Figure 3
is loaded in the x and y directions by Xi and Yi, respectively. The laminate is composed of N plies,
each of thickness t. Because of manufacturing considerations,

- the orientation of the �bers in the plies are restricted to the discrete set (0o, +45o, �45o, and 90o),

- the laminate must be symmetric about its mid-plane,
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- the laminate must be balanced (same number of +45o and �45o layers).

Yi

Xi Xi

Yi

±45
902
02
02
902

±45

=

02902±45

chromosome

E2

Figure 3: Simply supported laminated plate subjected to normal in-plane loads and coding

The objective of the optimization is to minimize the number of plies in the laminate, N , such
that the manufacturing constraints are satis�ed, and such that the plate does not fail, neither from
buckling nor from insu�cient strength. Analytical expressions are available [28] to predict failure.
Failure modes are accounted for by the constraint �cr � 1, where �cr is the critical load factor (or
safety load factor). The optimization is performed through the choice of the total number of plies and
the �ber angles for each ply, i.e., we optimize the \stacking sequence" of the laminate.

To reduce the size of the optimization problem and to automatically satisfy the balance condition
we consider only laminates made up of 2-ply stacks 02 (two 0o plies), 902 (two 90o plies), or �45 (a
pair of +45o and �45o plies). The constraint on symmetry is readily implemented by considering only
one half of the laminate (the other half being deduced by symmetry). As a result a laminate with
under N plies can be represented by a chromosome of length N=4. To accommodate variable thickness
in a �xed string length we add an empty stack and denote it as E2. Figure 3 shows an example of a
laminate cross-section, and the associated coded chromosome assuming that the maximum thickness
needed is N = 16 plies.

We minimize the objective function f which is de�ned as,

if �cr � 1; f = N + "[1� �cr];

if �cr < 1; f = N
�
p

cr

:
(1)

The constraint on failure of the laminate is enforced by the penalty functions (1=�pcr). p is a penalty
parameters for failure. Because of the discrete nature of the problem, there may be several feasible
designs of the same minimum thickness. Of these designs, we de�ne the optimum to be the design
with the largest failure load �cr. Therefore, the objective function is linearly reduced in proportion to
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the failure margin for designs that satisfy the failure constraint (term "[1��cr]). A value of " (" = 6)
was derived in [28] along with a more extensive analysis.

The setting of p is the subject of the present study.

4.2 The segregated genetic algorithm

4.2.1 Motivations

As it was seen in Section 2, a general approach to handling constraints in evolutionary computation
techniques is the use of penalty functions. The amount of penalty for each constraint violation is
typically controlled by a penalty parameter that has a crucial inuence on the performance of the
genetic algorithm. If the amount of penalty for being infeasible is too small, the search will yield
infeasible solutions. Reciprocally, the aw of heavily penalizing infeasible designs is that it limits the
exploration of the design space to feasible regions, precluding short cuts through the infeasible domain.
The general procedure is to tune the penalty functions on each problem case to assure convergence
in the feasible domain while permitting an e�cient search. Apart from tuning, there is no general
solution to the problem of optimally adjusting penalties, neither in classical numerical methods, nor
in evolutionary calculation. Instead of �ne tuning penalties, the segregated genetic algorithm is an
attempt at desensitizing the method to the choice of penalty parameters.

4.2.2 Description

In the segregated genetic algorithm (SGGA), the population is split into two co-existing and co-
operating groups that di�er in the way the �tnesses of their members are calculated. Each group uses
a di�erent value of the penalty parameter p. Each of the groups corresponds to the best performing
individuals with respect to one penalty parameter. The two groups interbreed, but they are segregated
in terms of rank. Two advantages are expected. First, because the penalty parameters are di�erent,
the two groups will have distinct trajectories in the design space. Because the two groups interbreed,
they can help each other out of local optima. The SGGA is thus expected to be more robust than the
GA. Second, in constrained optimization problems, the optimum is typically located at the boundary
between feasible and infeasible domains. If one selects one of the penalty parameters large (say p1)
and the other small (p2), one can achieve simultaneous convergence from both the feasible and the
infeasible side. The global optimum will then be rapidly encircled by the two groups of solutions, and
since the two groups of designs interbreed, the global optimum should be located faster.

For example, in structural optimization, one usually seeks to minimize the weight of a structure.
The \p1 group" contains heavy designs that do not fail, while the \p2 group" contains light designs
that fail. The optimum design, which is a compromise between weight and safety, is located somewhere
between the p1 and p2 groups

Figure 4 gives the ow chart of the SGGA. Note that when the individuals are ranked, duplicates
are pushed to the bottom (low rank) of the lists. This is a protection against premature uniformization
of the population. Then, from the two lists of 2m ranked individuals, one single population of m
individuals is built which mixes the relative inuences of the two lists (this step is referred to as
\merge the two lists ..." in Figure 4). One starts by selecting the best individual of the list established
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using the highest penalty parameter (p1). Then, one chooses the best individual of the other list
that has not yet been selected. The process is repeated alternatively on each list until m individuals
have been selected. Then, reproduction occurs as usual by application of linear ranking selection,
crossover, mutation, and stack swap to the combined list, creating m o�spring. They are added to
the m parents, and the entire process is repeated. Note that the crossover applied here is a one-point
thick crossover (probability = 1) which ressembles one-point crossover, the mutation can independently
change the thickness of the laminate or change the orientation of stacks (probabilities = 0.05 and 0.01,
respectively), and the stack swap operator (probability = 1) shu�es a little the ordering of the plies
in the laminate. The population has 8 individuals, 4 in each group. The interested reader should refer
to [28] for more details.

Create 2*m designs at random

Evaluate the objective functions of the designs
for the 2 penalty parameters. Create 2 ranked lists

Merge the 2 lists into 1 ranked population of designs

Select and recombine (crossover, mutation, stack swap)
      m new designs

Evaluate the objective functions of the m new designs
for the 2 penalty parameters. From the old and the new

generations, create 2 ranked lists of 2*m designs

Merge the 2 lists into 1 ranked new generation of designs

Optimal designsSTOP?
YESNO

Figure 4: Flow-chart of a segregated genetic algorithm

4.3 Optimization of composite laminates by SGGA

We now turn to the performance of the segregation strategy for handling constraints. We �rst de�ne
a performance criterion and then compare the SGGA with an equivalent algorithm that does not rely
on segregation to handle constraints.

4.3.1 Performance criterion

It is common in stacking sequence problems to have many near optimal designs. For this reason, we
de�ne practical optima as feasible optimal weight designs for which �cr is within a 10th of a percent
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of �cr of the global optimum. The measure of the performance of the algorithm is the reliability of
the algorithm. It is the probability the algorithm has of �nding a practical optimum after a given
number of analyses (evaluations of the objective function). In this study, the reliability is calculated
by averaging the results of 3000 independent searches for each implementation that is being tested.
Each search is 6000 analyses long. The price of the search is the number of analyses necessary to reach
a reliability of 80%.

4.3.2 Results

GA type Price of search

EGA p=0.4 r = 0:15�

EGA p=0.5 1380
EGA p=5.0 3980

SGGA p1=0.5 p2=0.4 1270
SGGA p1=5.0 p2=0.4 3350
SGGA p1=0.5 p2=0.5 990

Table 4: Price of the search of EGA and SGGA. � : reliability at 6000 analyses. The price is not
de�ned because 80% reliability was not achieved within 6000 analyses

We consider a graphite-epoxy plate with longitudinal and lateral dimensions a = 20 in. and b =
5 in., respectively. The material properties are: E1 = 18.50 � 106 psi; E2 = 1.89 � 106 psi; G12 =
0.93 � 106 psi; �12 = 0.3; t = 0.005 in. (t is the basic ply thickness). The maximum thickness for a
laminate is assumed to be 64 plies, i.e., the string length is 64/4 = 16. Three loadings are considered
simultaneously: [X1 = 12,000. lb/in, Y1 = 1,500. lb/in], [X2 = 10,800. lb/in, Y2 = 2,700. lb/in], [X3

= 9,000. lb/in, Y3 = 4,500. lb/in], and the ultimate allowable strains are �ua1 = 0.008, �ua2 = 0.029, ua12
= 0.015. This optimization problem has been treated over 100000 times, so the best-known design is
taken as the optimum.

The performance of the SGGA (p1 6= p2) is compared with the performance of the same algorithm
when p1 = p2. When p1 = p2, the co-evolutionary aspect of the SGGA is lost to yield an algorithm
that we call superElitist Genetic Algorithm (EGA). Table 4 gives the prices of the search for EGA
and SGGA. Three values of the penalty parameter p, 0.4, 0.5 and 5.0. These values were found
experimentally. p = 0:5 is the optimal setting of the penalty parameter, as it can be seen in Table 4.
p = 0:4 is a small value of the penalty parameter, and the search often gets trapped in the infeasible
region of the design space (although the global optimum is still feasible for this value of p). p = 5:0
is a large value of the penalty parameter. All three combinations of p1 and p2, p1 6= p2, are tested
with the SGGA.

Table 4 shows that EGA endures a dramatic decrease in performance if p is poorly chosen. For
p = 0:4, the reliability achieved by EGA is only 15% after 6000 analyses. This is because EGA gets
trapped at a local infeasible optimum (N = 44 plies, �cr � 0.8 when the global optimum has N = 48
plies, �cr � 1.01). SGGA on the contrary maintains a decent level of performance for the worst
possible choice of penalty parameters. For p1 too large (=5.0) and p2 too small (=0.4), the price of
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SGGA is 3350 analyses. Providing that p1 is taken small and p2 large, SGGA is less sensitive to the
tuning of p than EGA is.

Furthermore, segregation speeds up the search since the best price with SGGA is 990 analyses
against 1380 analyses for EGA. Those �gures, compared to the size of the design space (416 � 4: 109),
show how e�cient specialized evolutionary algorithms can be on this type of problem.

5 Unit Commitment Problem

The unit commitment in a power system is a complex optimization problem because of multiple
nonlinear constraints which can not be violated while �nding the optimal schedule. An electric power
network usually operates under continuous variation of consumer load demand. This demand for
electricity exhibits such large variations between weekdays and weekends, and between peak and o�-
peak hours that it is not economical to keep all the generating units continuously on-line; since fuel
expenses constitute a signi�cant part of the overall generation costs. In a system, there exist various
types of generating units that are categorized on the basis of fuel used (e.g., coal, natural gas, oil),
production costs, generating capacities and operating characteristics. Thus determining which units
should be kept on-line and which ones should not, constitutes a di�cult decision-making task for the
operators seeking to minimize the system operational cost.

Several mathematical programming techniques have been reported in the literature [6, 32, 44] to
solve the unit commitment problem. They primarily include priority list and heuristic methods, dy-
namic programming, method of local variations, mixed integer programming, lagrangian relaxation,
branch and bound, bender decomposition, etc. Among these classical techniques, dynamic program-
ming methods based on the priority list have been used most extensively throughout the power in-
dustry. However, di�erent strategies (for selecting a set of units from priority list) have been adopted
with dynamic programming to limit the search space and execution time.

In recent work, some researchers have suggested arti�cial intelligence based techniques to sup-
plement the limitation of mathematical programming methods. These are simulated annealing [59],
expert systems [41], heuristic rule-based systems [58] and neural networks [43]; these hybrid approaches
have demonstrated some improvement in solving unit commitment problems. However, heuristic and
expert system based mathematical approaches require a lot of operator interaction which is trouble-
some and time-consuming [21].

This section presents an evolutionary algorithm to solve the unit commitment problem. The main
purpose of using the evolutionary approach is to replace classical solution methods with a population-
based global search procedure which has some distinct advantages.

5.1 Problem Description

The unit commitment problem involves in determining which of the generating units are to be commit-
ted (on or o�) in every time interval during the scheduling time horizon. This decision must take into
account load forecast information and the economic implications of the startup or shutdown of various
units. The transition between their commitment states must satisfy the operating (minimum up and
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down time) constraints. So the demand and the reserve requirement impose global constraints in cou-
pling all active generating units, while the di�erent operating characteristics of each unit constitute
local constraints. Also some stand-by capacity (called spinning reserve) is required to be maintained
at all time in addition to the forecasted load in order to meet unexpected load demand and sudden
unit failures.

5.2 Objective function

The objective of the unit commitment problem is to determine the state of each unit uti (0 or 1) at
each time period t, where unit number i = 1 : : :Umax, and time periods t = 1 : : :Tmax, so that the
overall operation cost is a minimum within the scheduling time horizon.

min
PTmax

t=1

PUmax

i=1 [uti AFLCi + uti(1� ut�1i ) Si(x
t
i) + ut�1i (1� uti) Di] (1)

For each committed unit, the cost involved is the start-up cost (Si) and the Average Full Load
Cost (AFLCi) per MWh, according to the unit's maximum capacity such that

PUmax

i=1 Pi
max � Rt + Lt; (2)

where Pi
max is the maximum output capacity of unit i, Lt is the demand and Rt is the spinning

reserve in time period t. The above objective function should satisfy minimum up-time and down-time
constraints of generating units.

The start-up cost is expressed as a function of the number of hours (xti) the unit has been down and
the shut-down cost is considered as a �xed amount (Di) for each unit per shut-down, and these state
transition costs are applied in the period when the unit is committed or taken o�-line respectively
[23].

However, unit commitment decisions based solely on the unit-AFLC usually do not provide suf-
�cient information about the impact of system load conditions on how e�ciently (e.g., fully) the
committed units being utilized while determining a near-optimal commitment [27]. To compensate
the de�ciency associated with committed decisions based on the classical AFLC of units, an index is
used to measure the utility of each commitment decision, while satisfying the global constraint (equ.
(2)). This is called an utility factor and can be calculated as

Utility Factor = Load�Reserve Requirements
Total committed output

. So during the performance evaluation, commitment
decisions having a low utility factor are penalized accordingly.

5.3 GA-based Unit Commitment

The task of the GA-based commitment scheduler is to ensure the adequate power supply over the entire
scheduling period, in a most cost-e�ective manner while satisfying the system operational constraints.
For developing a GA-based scheduler, we �rst map the problem space into the framework of genetic
algorithm. Accordingly, each chromosome is encoded in binary form (bit string) to represent the
state of commitment variables for the units that are available in the system. So the allele value
at loci give the state (on/o�) of the units as a commitment decision at each time period. In this
study, a short-term commitment is considered with a 24-hour time horizon. Since the system load
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varies substantially over a 24-hour period and the cost of operation over this time span depends on
the timing and frequency of unit's start-ups and shut-downs, this commitment problem is generally
viewed as a multi-period problem where the commitment horizon is divided into a number of periods
of shorter length (usually a one-hour commitment interval).

During the genetic optimization process, the evolved commitment decisions satisfying both gen-
eration constraints and unit constraints are regarded as feasible solutions. Any violation of these
constraints is penalized through a penalty function. Accordingly, the raw �tness function is formu-
lated using a weighted sum of the objective function and values of the penalty function based on the
number of constraints violated and the extent of these violations. The �tness is then scaled to get a
non-negative �gure of merit for each commitment decision. The scaled �tness is subsequently used to
determine the probability of selecting the members in the population for breeding.

START

 AT   T:=1

             RUN 
 GENETIC  ALGORITHM
 FOR  FIXED NUMBER
 OF GENERATIONS

OR

                     OUTPUT 
          A  SET  OF  FEASIBLE 
      COMMITMENT  DECISIONS
    WITH  SMALLER  ASSOCIATED
COSTS AS OPTIONAL STRATEGIES

STOP

YES NO
 T > T_max

IS

   T := T + 1

REPLACE A PERCENTAGE
   OF POPULATION

  DETERMINE THE PATH FOR
MINIMUM COST STRATEGY AND 
                 DISPLAY 
 COMPLETE UNIT COMMITMENT 
 SCHEDULE WITH TOTAL COST

LOOK  UP   TABLES

FORECASTED  LOAD  PROFILE

THERMAL UNITS CHARACTERISTICS

AND OPERATIONAL CONSTRAINTS

STATUS  OF  UNITS

update status infomation
       for each strategy

INTERACTION
      WITH

     DOMAIN
INFORMATIONACCORDING TO SOME

STOPPING  CRITERIA

FOR EACH STRATEGY

OUTPUT THE BEST
SUCCESSIVE PATH
OF THE STRATEGY

  INITIALIZE
POPULATION

store status infomation
       for all strategies

1

2

34

5

Figure 5: A ow diagram for unit commitment using genetic algorithms

The ow chart of implementing the GA-based unit commitment is shown in �gure 5. For better
understanding of the diagram, some of the ow lines connected to the repeatedly used program module
(GA routines) and domain information (look-up tables) are numbered in accordance with the sequence
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of execution. The GA-based unit commitment program starts with a random initial population (at
T=1) and computes the �tness of each individual (commitment decision) using the forecasted load
demand at each period, and the operating constraints of the units (using lookup tables). Each time
the genetic optimizer is called, it runs for a �xed number of generations or until the best individual
remains unchanged for a long time (here 100 successive generations).

Since the unit commitment problem is time-dependent, these piecewise approaches (moving win-
dow) of working forward in time and retaining the best decision, can not be guaranteed to �nd the
optimal commitment schedule. The reason for this is that a decision with signi�cantly higher costs
during the early hours of scheduling could lead to signi�cant savings later and may produce a lower
overall cost commitment schedule. For �nding near-optimal solutions, a number of feasible commit-
ment decisions (less than or equal to a prede�ned value S) with smaller associated costs are saved
at each time period. These strategies1 determine how many possible alternative paths are available
at each period for �nding the overall operation cost. The selection of S is e�ective in economical
scheduling (in �nding an optimal solution), memory requirement and computation time. In order to
save computation time the same strategies are carried forward to the next period if the load remains
unaltered or varies slightly in the current period such that load-reserve requirements are satis�ed by all
strategies. If a strategy cannot meet the demand of present period, the genetic optimization process is
performed for the period to �nd a feasible successor paths with smaller cost. This approach increases
the likelihood of �nding the path of minimum cumulative cost.

These temporary commitment strategies are used to update the status information of the units (up-
time/down-time counter) to keep track of the units in service or shutdown for a number of successive
hours. In the next time period, half of the population is replaced by randomly generated individuals
to introduce diversity in the population so that the search for new commitment strategy can proceed
according to the load demand. The purpose of keeping half of the previous population is that in most
situations the load varies slightly in some successive time intervals and the previous better individuals
(commitment strategies) are likely to perform well in the current period. However, if there is a drastic
change in load demand, newly generated individuals can explore the commitment space for �nding
the best solution. The iterative process continues for each period in the scheduling horizon, and the
accumulated cost associated with each commitment strategy gives the overall cost for the commitment
path.

During these multi-period optimization processes, if in a particular period no feasible solution
(strategy) is found, the process is repeated so that at least one feasible solution is found before
shifting to the next period. However, in our test example such repetitions are required only in a few
occasions in later periods.

5.4 Experimental results

The GA-based unit commitment scheduler has been tested on a number of example cases and some
were reported in [9, 7]. Due to space restrictions we report results of one example problem which
consists of 10 thermal units (please refer to [9] for details). It is to be noted that the capacities, costs
and operating constraints varied greatly among the various generating units in this example system.

1A strategy is a sequence of commitment decisions from the starting period to the current period with its accumulated

cost.
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Di�erent type of load pro�les are tested which represent typical operating circumstances in the studied
power system. We have considered a short term scheduling where the time horizon is 24-hour and
scheduling for an entire day is done in advance which may be repeated using load pro�le of each day
for a long-term scheduling.

In these experiments, the spinning reserve requirement is assumed to be 10% of the expected hourly
peak load. A program implementing the algorithm has been run on a SUN (sparc 2) workstation
under UNIX 4.1.1 operating system. The experiment is conducted with a population size of 250 using
di�erent crossover and mutation rates. For the result reported here (shown in a tabular form), a
crossover probability of 78% and mutation rate of 15% were used along with a stochastic remainder
selection scheme [5] for reproduction. We also used an elitist scheme which passes the best individual
unaltered to the succeeding generation. Each run was allowed to continue up to 500 generations and
the strategy path with minimum cumulative cost gives a near-optimal commitment for the whole
scheduling period.

For this example, Table 5 gives the characteristics and the initial states of the generating units.
Table 6 gives commitment schedule for two cases, which were run independently. In �rst case, one best
solution is saved at each time period and in second case, multiple least cost strategies are saved for
determining the minimum cost path. A comparison shows that substantial reduction in overall cost
can be achieved when the best commitment schedule is determined from multiple least cost strategies.

In this table, the second column gives the hourly load demand, the third column shows total
requirement after adding spinning reserve, the rest columns give the total output capacity (in MW)
of the committed units and the state of units in each case, where `1' is used to indicate a unit is
committed, `0' to indicate that a unit is decommitted. The GA-based unit-commitment system have
been tested under di�erent operating conditions in order to evaluate the algorithm's performance.

It is observed that the scheduling which produces optimal power output does not always give the
overall minimum cost scheduling, and also the minimum cost scheduling is very sensitive to the system
parameters and the operating constraints of the generating units.

5.5 Discussion

The unit commitment is a highly-constrained decision-making problem, and traditional methods make
several assumptions to solve the problem. Most of these traditional methods require well-de�ned per-
formance indices and explicitly use unit selection list or priority order list for determining the commit-
ment decisions. The major advantages of using GAs are that they can eliminate some limitations of
mathematical programming methods. Particularly, the GA-based unit commitment scheduler evalu-
ates the priority of the units dynamically considering the system parameters, operating constraints and
the load pro�le at each time period while evolving near-optimal schedules. Though global optimality
is desirable, but in most practical purposes near-optimal (or good feasible) solutions are generally
su�cient. This evolutionary approach attempts to �nd the best schedule from a set of good feasible
commitment decisions. Also the method presented in this section can include more of the constraints
that are encountered in real-world applications of this type.

This study suggests that the GA-based method for short-term unit commitment is a feasible al-
ternative approach and is easy to implement. One disadvantage of this approach is the computational
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Unit Maximum Min. Up Min. Down Initial St Up cost Sh Down
No. Capacity Time Time Status b1 b2 b3 Cost AFLC

(MW) (hr) (hr) (hr)
1 60 3 1 -1 85 20.588 0.2 15 15.3
2 80 3 1 -1 101 20.594 0.2 25 16
3 100 4 2 1 114 22.57 0.2 40 20.2
4 120 4 2 5 94 10.65 0.18 32 20.2
5 150 5 3 -7 113 18.639 0.18 29 25.6
6 280 5 2 3 176 27.568 0.15 42 30.5
7 520 8 4 -5 267 34.749 0.09 75 32.5
8 150 4 2 3 282 45.749 0.09 49 26.0
9 320 5 2 -6 187 38.617 0.130 70 25.8
10 200 5 2 -3 227 26.641 0.11 62 27.0

(-) indicates unit is down for hours and positive otherwise.

*We used start-up cost = b1;i(1 � e�b3;i:(x
t
i)) + b2;i.

Table 5: Characteristics and initial state of the thermal units

--------------------------------------------------------------------------------

CASE - 1 CASE - 2

When only best strategy Best of five least

is saved at each hour cost strategies saved

--------------------------------------------------------------------------------

Time Load Load + Committed State of Committed State of

in Demand Reserve Output units Output Units

(hr) (MW) (MW) (MW) (MW)

--------------------------------------------------------------------------------

1 1459.00 1677.85 1700.00 1011111110 1710.00 1110011111

2 1372.00 1577.80 1710.00 1110111011 1860.00 1110111111

3 1299.00 1493.85 1710.00 1110111011 1550.00 1111101011

4 1280.00 1472.00 1490.00 0111101011 1490.00 0111101011

5 1271.00 1461.65 1470.00 1011101011 1470.00 1011101011

6 1314.00 1511.10 1550.00 1111101011 1550.00 1111101011

7 1372.00 1577.80 1600.00 1101101111 1580.00 1110101111

8 1314.00 1511.10 1600.00 1101101111 1520.00 0110101111

9 1271.00 1461.65 1500.00 1111101110 1500.00 1111101110

10 1242.00 1428.30 1630.00 1111011110 1500.00 1111101110

11 1197.00 1376.55 1420.00 0111011010 1380.00 1011110111

12 1182.00 1359.30 1360.00 1111011001 1360.00 1101110111

13 1154.00 1327.10 1330.00 1001111001 1360.00 1101110111

14 1138.00 1308.70 1410.00 1101111001 1310.00 1111110011

15 1124.00 1292.60 1310.00 1111110011 1310.00 1111110011

16 1095.00 1259.25 1280.00 0110110111 1260.00 1111110110

17 1066.00 1225.90 1260.00 1010110111 1260.00 1111110110

18 1037.00 1192.55 1260.00 1010110111 1200.00 0111110110

19 993.00 1141.95 1180.00 1111100111 1180.00 1111100111

20 978.00 1124.70 1200.00 1111001010 1180.00 1111100111

21 963.00 1107.45 1320.00 0101011010 1180.00 1111100111

22 1022.00 1175.30 1210.00 1101011100 1180.00 1111100111

23 1081.00 1243.15 1340.00 1110111100 1250.00 0111110011

24 1459.00 1677.85 1900.00 1011111111 1680.00 1111011011

-------------------------------------------------------------------------------

Cumulative scheduling Cumulative scheduling

cost = 940101.65 cost = 877854.32

-------------------------------------------------------------------------------

The difference in cost is approximately 7% in these two cases.

Table 6: Unit commitment schedules determined by the genetic algorithm23



time needed to evaluate the population in each generation, but since genetic algorithms can e�ciently
be implemented in a highly parallel fashion, this drawback becomes less signi�cant with its implemen-
tation in a parallel machine environment. Further research should address a number of issues to solve
the commitment problem: Experiments should be carried out with large power systems having hun-
dreds of units in multiple areas. One possible approach may be to use indirect encoding or use of some
grammar rule (as used in other GA applications) for representing a cluster of units in a chromosome.
Also in a large power plant, the unit-commitment task may be formulated as a multi-objective con-
strined optimization problem; where it is necessary to take into account not only the operational cost
but also the emission of pollutant and other environmental factors as mutually conicting objectives.
Finally, it may be also possible to integrate both the unit commitment and the economic dispatch (i.e.
the optimal allocation of the load among the committed units) in a single evolutionary optimization
framework using our recently-developed structured genetic model [8].

6 Conclusions

The paper surveys many heuristics which support the most important step of any evolutionary tech-
nique: evaluation of the population. It is clear that further studies in this area are necessary: di�erent
problems require di�erent \treatment". It is also possible to mix di�erent strategies described in this
paper. The authors are not aware of any results which provide heuristics on relationships between
categories of optimization problems and evaluation techniques in the presence of infeasible individuals;
this is an important area of future research.
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