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Abstract

A method of constrained parameter estimation is proposed for a class of computer vision problems. In a typical application, the parameters

will describe a relationship between image feature locations, expressed as an equation linking the parameters and the image data, and will

satisfy an ancillary constraint not involving the image data. A salient feature of the method is that it handles the ancillary constraint in an

integrated fashion, not by means of a correction process operating upon results of unconstrained minimisation. The method is evaluated

through experiments in fundamental matrix computation. Results are given for both synthetic and real images. It is demonstrated that the

method produces results commensurate with, or superior to, previous approaches, with the advantage of being faster than comparable

techniques.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in computer vision involve estimating

the parameters that constrain a set of image feature

locations. In some cases, the parameters are subject to an

ancillary constraint not involving feature locations. Two

example problems of this form are the stereo and motion

problems of estimating coefficients of the epipolar equation

[1] and the differential epipolar equation [2], each involving

an ancillary cubic constraint. The principal equation that

applies to a wide class of problems, including those

specified above, takes the form

uTuðxÞ ¼ 0: ð1Þ

Here u ¼ ½u1;…; ul�
T is a vector representing unknown

parameters; x ¼ ½x1;…; xk�
T is a vector representing an

element of the data (for example, the locations of a pair of

corresponding points); and uðxÞ ¼ ½u1ðxÞ;…; ulðxÞ�
T is a

vector with the data transformed in a problem-dependent

manner such that: (i) each component uiðxÞ is a quadratic

form in the compound vector ½xT; 1�T; (ii) one component is

equal to 1. A common form of the ancillary constraint is

fðuÞ ¼ 0; ð2Þ

where for some real number k; f is a scalar-valued function

homogeneous of degree k—that is such that

fðtuÞ ¼ tkfðuÞ ð3Þ

for every u and every non-zero scalar t: In the above

example problems the ancillary constraints are both given

by homogeneous functions of degree 3. The estimation

problem associated with Eq. (1) and (2) can be stated as

follows: Given a collection x1;…; xn of image data and a

meaningful cost function that characterises the extent to

which any particular u fails to satisfy the system of the

copies of Eq. (1) associated with x ¼ xi ði ¼ 1;…; nÞ; find

u – 0 satisfying (2) for which the cost function attains its

minimum. Use of the Gaussian model of errors in data in

conjunction with the principle of maximum likelihood leads
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to a complicated cost function with a tractable first-order

approximation defined as

JAMLðu; x1;…; xnÞ ¼
Xn

i¼1

uTuðxiÞuðxiÞ
Tu

uT›xuðxiÞLxi
›xuðxiÞ

Tu
;

where, for any length k vector y; ›xuðyÞ denotes the l £ k

matrix of the partial derivatives of the function x 7! uðxÞ

evaluated at y; and, for each i ¼ 1;…; n; Lxi
is a k £ k

symmetric covariance matrix describing the uncertainty of

the data point xi: A full derivation of JAML of may be found

in Ref. [3]; see also [4] for the inception of JAML, and [5] for

an instance of its adoption. If JAML is minimised over those

non-zero parameter vectors for which (2) holds, then the

vector at which the minimum of JAML is attained, the

constrained minimiser of JAML; defines the approximated

maximum likelihood estimate ûAML: The function u 7!

JAMLðu; x1;…; xnÞ is homogeneous of degree zero and the

zero set of f is unaffected by multiplication by non-zero

scalars, so ûAML is determined only up to scale.

This paper presents a method for determining ûAML:

Unlike previous approaches, the proposed method handles

the ancillary constraint in an integrated fashion, not by

means of a correction process operating upon results of

unconstrained minimisation. The results of experiments in

fundamental matrix estimation given here indicate that the

method attains a very high level of performance in terms of

accuracy and speed.

2. Fundamental numerical scheme

Isolating the constrained minimiser of JAML is a

challenging problem. Much easier to find is the uncon-

strained approximated maximum likelihood estimate, ûu
AML;

defined as the unconstrained minimiser of JAML; it is

obtained by ignoring the ancillary constraint and searching

over all of the parameter space. While ûu
AML cannot be

expressed in closed form, a numerical approximation to it

can be calculated by employing a suitable numerical scheme

[3]. Underpinning numerical calculation is the fact that

ûu
AML satisfies the variational equation for unconstrained

minimisation

½›uJAMLðu; x1;…; xnÞ�u¼ûu
AML

¼ 0T ð4Þ

with ›uJAML the row vector of the partial derivatives of

JAML with respect to u: Direct computation shows that

½›uJAMLðu; x1;…; xnÞ�
T ¼ 2Xuu; ð5Þ

where

Xu ¼
Xn

i¼1

Ai

uTBiu
2

Xn

i¼1

uTAiu

ðuTBiuÞ
2

Bi;

Ai ¼ uðxiÞuðxiÞ
T
;

Bi ¼ ›xuðxiÞLxi
›xuðxiÞ

T
:

Thus (4) can be written as

½Xuu�u¼ûu
AML

¼ 0; ð6Þ

providing a convenient basis for determining ûu
AML: A

straightforward algorithm for numerically solving the last

equation can be derived by realising that a vector u satisfies

(6) if and only if it falls into the null space of the matrix Xu:

Thus if uk21 is a tentative approximate solution, then an

improved solution can be obtained by picking a vector uk

from that eigenspace of Xuk21
which most closely approxi-

mates the null space of Xu; this eigenspace is, of course, the

one corresponding to the eigenvalue closest to zero in

absolute value. The fundamental numerical scheme (FNS)

[3] implementing this idea is presented in Algorithm 1. The

scheme is seeded with the algebraic least squares (ALS)

estimate, ûALS; defined as the unconstrained minimiser of

the cost function JALSðu; x1;…; xnÞ ¼ kuk22 Pn
i¼1 u

TAiu;
with kuk ¼ ð

Pl
j¼1 u

2
j Þ

1=2: The estimate ûALS coincides, up

to scale, with an eigenvector of
Pn

i¼1 Ai associated with the

smallest eigenvalue, and this can be found by

performing singular-value decomposition (SVD) of the

matrix ½uðx1Þ;…; uðxnÞ�
T:

Algorithm 1. Fundamental numerical scheme

1. Set u0 ¼ ûALS:

2. Assuming that uk21 is known, compute the matrix Xuk21
:

3. Compute a normalised eigenvector of Xuk21
correspond-

ing to the eigenvalue closest to zero (in absolute value)

and take this eigenvector for uk:

4. If uk is sufficiently close to uk21; then terminate the

procedure; otherwise increment k and return to Step 2.

Different but related schemes for numerically solving

equations similar to (6) were developed by Leedan and

Meer [6], and Matei and Meer [7]. Yet another approach is

Kanatani’s [4, Chap. 9] renormalisation scheme, in which

an estimate is sought at which ›uJAML is approximately zero

(see [8] for details).

FNS has the advantages that it aims to minimise a cost

function which is statistically well founded, provides a

genuine means for theoretically calculating the minimiser,

and is simply expressed and efficient. Furthermore, FNS

proves useful in determining theoretical relationships

between various existing methods of minimising JAML

(see [8]).

3. Constrained fundamental numerical scheme

With all its virtues, FNS still lacks a proper accommo-

dation of the ancillary constraint. A standard way of dealing

with this problem is to adopt an adjustment procedure as a

separate post-process (see e.g. [4, Chap. 9], [7]). In contrast,
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as shown next, it is possible to merge FNS and the ancillary

constraint in a fully consistent, integrated fashion. The

resulting scheme, the first of its kind, is a variant of FNS in

which Xu is replaced by a more complicated matrix.

The starting point for the development of the new

algorithm is the variational system for constrained mini-

misation

½›uJAMLðuÞ þ l›ufðuÞ�u¼ûAML
¼ 0T

;

ð7Þ

fðûAMLÞ ¼ 0;

where l is scalar. This system is readily derived using the

standard method of Lagrange Multipliers. Another crucial

ingredient is the identity ›ufðuÞu ¼ kfðuÞ obtained by

differentiating (3) with respect to t and evaluating at t ¼ 1:

With this identity, the equation fðuÞ ¼ 0 is equivalent to

aT
uu ¼ 0; where au ¼ ½›ufðuÞ�

T=2: Combining this with Eq.

(5), the system (7) becomes

Xuuþ lau ¼ 0; ð8Þ

aT
uu ¼ 0; ð9Þ

where all evaluations at ûAML are dropped for clarity.

Premultiplying both sides of Eq. (8) by aT
u and bearing in

mind that aT
uau ¼ kauk

2
; we find that

aT
uXuuþ kauk

2
l ¼ 0

whence l ¼ 2kauk
22

aT
uXuu: Consequently, Eq. (8) can be

written as

ðXu 2 kauk
22

auaT
uXuÞu ¼ 0: ð10Þ

Let Pu be the l £ l matrix given by

Pu ¼ Il 2 kauk
22

auaT
u ;

where Il denotes the l £ l identity matrix. Note that Pu is

symmetric and obeys P2
u ¼ Pu: With use of Pu; Eq. (10) can

be written as

PuXuu ¼ 0: ð11Þ

In view of Eq. (9),

ðIl 2 PuÞu ¼ kauk
22

auaT
uu ¼ 0: ð12Þ

Hence Puu ¼ u; and so Eq. (11) immediately leads to

PuXuPuu ¼ 0: ð13Þ

Let Yu be the l £ l matrix defined by

Yu ¼ kuk2PuXuPu þ Il 2 Pu:

Clearly, Yu is symmetric. Since the function u 7! Pu is

homogeneous of degree 0 and the function u 7! Xu is

homogeneous of degree 22; it follows that the function

u 7! Yu is consistently homogeneous of degree 0. In view of

Eqs. (12) and (13),

Yuu ¼ 0: ð14Þ

As is readily verified, this equation is in fact equivalent to

the system comprising Eqs. (8) and (9).

At this stage, one would hope that a modified FNS with

Yu playing the role of Xu would be a good tool for

calculating ûAML: However, experiments reveal that this

algorithm fails to converge.

Surprising as it may be, the solution strategy along the

lines of FNS is not always successful when applied to

equations like (14). This reflects the rather complicated

behaviour of the function that sends a symmetric matrix to

the eigenspace corresponding to the eigenvalue closest to

zero. Since this function is not available in closed form, the

question of convergence of FNS-like schemes is subtle and

difficult to tackle. If a particular equation, like (14), appears

not to be amenable to an FNS solution procedure, it is

natural to consider equivalent forms of the equation, hoping

that one can find a form for which the FNS approach will

work. In the case of Eq. (14), one can for example consider

equivalent equations of the form Y0
uu ¼ 0; where Y0

u ¼

Yu þ Nu and Nu is a symmetric matrix such that Nuu ¼ 0

for all u – 0 and such that the function u 7! Nu is

homogeneous of degree zero. The search for an appropriate

modification will often reveal a host of FNS-able forms.

Bearing the above in mind, we now advance a rather

complex modification of Yu for which, as experiments

indicate, the FNS approach works. The new matrix is a

result of search through various options and is derived from

a matrix Zu chosen so that Eq. (14) is equivalent to

Zuu ¼ 0: ð15Þ

To define Zu; we need a few preliminary expressions.

Denote by Hu the Hessian of JAML at u: Direct if tedious

calculation shows that

Hu ¼ 2ðXu 2 TuÞ;

where

Tu ¼
Xn

i¼1

2

ðuTBiuÞ
2


 Aiuu
TBi þ Biuu

TAi 2 2
uTAiu

uTBiu
Biuu

TBi

" #
:

Let Fu be the Hessian of f at u: For each i [ {1;…; l}; let ei

be the length l vector whose ith entry is unital and all other

entries are zero. With these preparations, set

Zu ¼ Au þ Bu þ Cu;

where

Au ¼ PuHuð2uu
T 2 kuk2IlÞ;

Bu ¼kuk2kauk
22

Xl

i¼1

ðFueia
T
u þ aueT

i FuÞXuueT
i

"

2 2kauk
22

auaT
uXuuaT

uFu

i
;
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Cu ¼ kauk
22
k

fðuÞ

4
Fu þ auaT

u 2
fðuÞ

2
kauk

22
auaT

uFu

� �
:

It should be emphasised that individually the matrices Au;

Bu and Cu do not have any special significance, and serve

only to split the otherwise lengthy formula. It should also be

stressed that Zu arises as a result of algebraic manipulations

that have no obvious geometric interpretation. Direct

calculation reveals that Auu ¼ kuk2PuHuu; Buu ¼ 0 and

Cuu ¼ ðIl 2 PuÞu for each u: Therefore Eq. (15) is

equivalent to

ðkuk2PuHu þ Il 2 PuÞu ¼ 0;

which is in turn equivalent to Eq. (14), as a simple argument

shows.

Note that Zu is not symmetric. On the other hand,

Zuu ¼ 0 is equivalent to

ZT
uZuu ¼ 0 ð16Þ

with ZT
uZu a symmetric matrix. This allows

Qu ¼ ZT
uZu

to be adopted as the ultimate replacement for Xu: The

steps of the resulting constrained fundamental numerical

scheme (CFNS) are given in Algorithm 2.

Algorithm 2. Constrained fundamental numerical scheme

1. Set u0 ¼ ûALS:

2. Assuming that uk21 is known, compute the matrix Quk21
:

3. Compute a normalised eigenvector of Quk21
correspond-

ing to the eigenvalue closest to zero (in absolute value)

and take this eigenvector for uk:

4. If uk is sufficiently close to uk21; then terminate the

procedure; otherwise increment k and return to Step 2.

A necessary condition for CFNS to converge to a

solution up of Eq. (16) is that the zero eigenvalue of Qup

should be simple, i.e. the null space of Qup should be one-

dimensional, with all members being scalar multiples of up:
When this condition is satisfied, the algorithm seeded with

an estimate close enough to up will produce updates quickly

converging to up: In practice it is required that, for each

k ¼ 0; 1;…; the smallest (non-negative) eigenvalue of Quk

should be sufficiently well separated from the remaining

eigenvalues. Sometimes, to meet the condition, the data will

have to be first suitably transformed and their covariances

propagated; upon application of CNFS, the estimate will

then have to be conformally readjusted (transformed back)

to account for the data-cum-covariances transformation.

Such is the case for fundamental matrix estimation, where

an initial transformation of raw data and their covariances is

necessary for a successful application of CFNS (this point

will be elaborated upon in Section 4).

4. Experimental evaluation

In this section, we present results of comparative tests

carried out to evaluate the performance of CFNS. Several

algorithms, including CFNS, were used to compute the

fundamental matrix from both synthetic and real image

data. A single item of data took the form of a quadruple

obtained by concatenating the coordinates of a pair of

corresponding points, the role of the principal constraint

was played by the epipolar constraint, and the ancillary

constraint was the condition that the determinant of the

fundamental matrix should vanish. The covariances of the

data were assumed to be the default 4 £ 4 identity matrix

corresponding to isotropic homogeneous noise in image

point measurement.

The basic estimation methods considered were:

† NALS ¼ Normalised Algebraic Least Squares Method,

† FNS ¼ Fundamental Numerical Scheme,

† CFNS ¼ Constrained FNS,

† GS ¼ Gold Standard Method.

Here, NALS refers to the normalised ALS method of

Hartley [9], which takes suitably normalised data as input

to ALS and back-transforms the resulting estimate; GS

refers to the (theoretically optimal) bundle-adjustment,

maximum-likelihood method described by Hartley and

Zisserman [10], seeded with the FNS estimate; FNS and

CFNS are as described earlier. CFNS was applied in the

Hartley-normalised data domain, with covariances

assumed again to be the 4 £ 4 identity matrix (covariance

propagation for data normalisation amounts simply to

multiplication of the original covariances by a single scalar

factor, and this transformation does not affect the

determination of the constrained minimiser). The data

normalisation combined with back-transforming of

estimates has no theoretical influence on the constrained

minimiser, but in practice significantly improves separation

of the smaller eigenvalues of the matrices Qu involved.

The CFNS algorithm usually fails to converge when used

with raw data, a phenomenon explained by the lack of

sufficient eigenvalue separation.

When comparing the outputs of algorithms, it is critical

that the ancillary constraint be perfectly satisfied. A

convenient way to enforce this constraint is to correct an

estimate of the fundamental matrix via a post-process. Any

estimate F̂ with kF̂kF ¼ 1 can be modified to a rank-2 matrix

F̂c with kF̂ckF ¼ 1 by minimising the distance kF̂ 2 F̂ckF
subject to the condition det F̂c ¼ 0; here k·kF denotes the

Frobenius norm. The minimiser can easily be found by

performing a SVD of F̂; setting the smallest singular value

to zero and recomposing. For the estimate generated by

FNS, a more sophisticated, Kanatani-like (cf. [4, Chap. 5],

[7]) correction can be obtained by means of the iterative
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process

ukþ1 ¼ uk 2 ½›ufðukÞH
2
uk
½›ufðukÞ�

T�21fðukÞH
2
uk
½›ufðukÞ�

T
;

ð17Þ

where H2
uk

denotes the pseudo-inverse of Huk
:

All estimates were post-hoc rank-2 corrected except in

the case of the NALS estimates, where SVD correction

preceded the final back-transformation of estimates. In the

following, we use the notation “ þ ” to denote a post-

process SVD correction, and “þþ” to denote an iterative

correction (see (17)) followed by SVD correction. Thus, the

composition of FNS and SVD correction is denoted by

FNS þ . Of the various methods listed here, only SVD

correction is guaranteed to generate a perfectly rank-2

estimate, although CFNS, GS and the iterative correction

usually get extremely close.

For reasons of clarity, testing of the Leedan-Meer and

Matei-Meer methods and Kanatani’s renormalisation tech-

nique was not included in the results presented here. As

reported previously [3,11], these unconstrained methods

deliver results almost identical to those of FNS, and here we

are primarily concerned with the improvement over these

methods stemming from the use of our new integrated,

constrained approach.

4.1. Synthetic image tests

While perhaps under-appreciated in computer vision,

synthetic tests are valuable, as we have ground truth

available and may employ repeated trials yielding results of

statistical significance.

The regime adopted was to generate true corresponding

points for some stereo configuration and collect perform-

ance statistics over many trials in which random Gaussian

perturbations were made to the image points. Many

configurations were investigated and the results below are

typical. Specifically, we conducted experiments by first

choosing a realistic geometric configuration for the cameras.

Next, 30 3D points were randomly selected in the field of

view of both cameras, and these were then projected onto

500 £ 500 pixel images to provide ‘true’ matches. For each

of 200 iterations, homogeneous Gaussian noise with

standard deviation of 1.5 pixels was added to each image

point, and the contaminated pairs were used as input to the

various algorithms.

Table 1 examines the FNS and CFNS methods in terms

of the cost function, JAML; and the ancillary constraint

residual, lfl: The values displayed are the averages of

individual values obtained in all 200 trials. As is to be

expected, and consistent with its design, FNS generates the

smallest value of JAML; but leaves a non-zero ancillary

constraint value, lfl: CFNS reduces the value of lfl almost

to zero and (necessarily) incurs a small increase in JAML:

Note that an SVD correction (which ensures f ¼ 0) of the

FNS estimate results in an associated JAML value that is

substantially increased. In contrast, SVD correction of the

CFNS estimate leaves the JAML value virtually unaffected,

and much smaller than the corrected FNS estimate. This

test, which is typical, confirms that CFNS is operating as

designed.

Table 2 compares the JAML values generated by the

methods NALS þ , FNS þ , FNSþþ , CFNS þ , and

GS þ . Note that all of the methods undergo a final SVD

rank-2 correction ensuring that the ancillary constraint is

perfectly satisfied. Were we to avoid this step (in, say, the

CFNS and GS approaches) it might be unclear whether a

low JAML value was due to the constraint not having been

exactly satisfied.

The results show that, with respect to JAML; GS þ and

CFNS þ perform best and equally well, with FNSþþ only

a little behind; FNS þ and NALS þ are set further back.

The same ordering occurs when using a measure in which

the estimated fundamental matrix is employed to reproject

the data and compute the distance of the data from the truth.

This reprojection error from truth may be regarded as an

optimal measure in the synthetic realm.

Finally, a timing test is also presented in Table 2. Here

we give the average time over 100 trials to compute NALS,

FNS, CFNS, and GS. Unsurprisingly, GS turns out to be by

far the slowest of the methods. While it may be speeded up

via the incorporation of sparse-matrix techniques, it is

destined to be relatively slow given the high-dimensionality

of its search strategy.

CFNS thus emerges as an excellent means of estimating

the fundamental matrix. Its performance is commensurate

with GS while being much faster. FNSþþ is only a little

short of CFNS in speed and accuracy. However, it does not

have the advantage of being an integrated method of

constrained minimisation.

Table 1

JAML and lfl values for FNS and CFNS before and after SVD rank-2

correction

JAML lfl

FNS 50.18 1.56 £ 10213

FNS þ 57.48 0

CFNS 52.62 3.07 £ 10225

CFNS þ 52.62 0

Table 2

JAML residuals, reprojection errors and execution times for rank-2 estimates

JAML Reproj. error Time

NALS þ 57.50 1.278 0.02

FNS þ 57.47 1.278 0.29

FNSþþ 53.42 1.265 0.61

CFNS þ 52.62 1.263 0.23

GS þ 52.62 1.263 3.50
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4.2. Real image tests

The image pairs from which we estimate fundamental

matrices are presented in Fig. 1. They exhibit variation in

subject matter, and in the camera set-up used for acquisition.

Features were detected in each image using the Harris

corner detector [12]. A set of corresponding points was

generated for each image pair by manually matching the

detected features. The number of matched points was 44 for

the building, and 55 for the soccer ball. For each estimation

method, the entire set of matched points was used to

compute a fundamental matrix.

Each estimator was used to generate a fundamental

matrix. Tables 3 and 4 show results obtained for various

methods when dealing with the soccer-ball and building

images, respectively. Measures used for comparison are

JAML and the reprojection error to data (the distance

between the reprojected data and the original data). Note

that the ancillary constraint is in all cases perfectly satisfied.

CFNS þ and GS þ give the best results and are essentially

inseparable, while FNSþþ is only slightly behind. FNS þ

and NALS þ lag much further behind.

5. Conclusion

The JAML cost function has been shown in many previous

studies to be valuable in obtaining a first-order approxi-

mation to a maximum likelihood estimate. Earlier work of

the authors showed that FNS is a theoretically well-founded

and efficient method for finding the minimiser of JAML;

given an initial estimate in the neighbourhood of the global

minimum. However, our experiments with fundamental

matrix estimation show that post-process SVD rank-2

correction of JAML’s minimiser can act to considerably

worsen the residual.

CFNS is a variant of the FNS method which incorporates

constraint in an integrated manner, aiming to solve an

equation characterising a constrained minimiser of JAML:

Our experiments suggest that CFNS achieves a smaller value

of JAML than is attained by either SVD rank-2 corrected FNS

or SVD rank-2 corrected ALS. It produces a slightly smaller

value of JAML than the slower, iteratively rank-2 corrected

FNS, and has the advantage of being a conceptually cogent,

integrated method for constrained minimisation. Further-

more, when compared with the much slower FNS-seeded

GS, it gives almost identical results, both in terms of JAML

residual and GS’s MLE cost function residual.
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Table 3

JAML residuals and reprojection errors for rank-2 estimates - soccer ball

images

JAML Reproj. error

(to data)

NALS þ 0.799 0.0926

FNS þ 0.813 0.0933

FNSþþ 0.442 0.0681

CFNS þ 0.442 0.0681

GS þ 0.442 0.0681

Table 4

JAML residuals and reprojection errors for rank-2 estimates - building

images

JAML Reproj. error (to data)

NALS þ 5.35 0.285

FNS þ 4.88 0.275

FNSþþ 2.05 0.173

CFNS þ 1.88 0.163

GS þ 1.88 0.163

Fig. 1. The building and soccer ball stereo image pairs.
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