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Abstract

For allocation problems with one or more items, the well-known Vickrey-
Clarke-Groves (VCG) mechanism (aka. Clarke mechanism, Geregalickrey
Auction) is efficient, strategy-proof, individually rational, and does maur a
deficit. However, it is not (strongly) budget balanced: generally, gents’ pay-
ments will sum to more thafl. We study mechanisms thegdistributesome of
the VCG payments back to the agents, while maintaining the desirable prepertie
of the VCG mechanism. Our objective is to come as close to budget badance
possible in thevorst case (so that we do not require a prior). For auctions with
multiple indistinguishable units in which marginal values are nonincreasieg, w
derive a mechanism that is optimal in this sense. We also derive an optiecal-
anism for the case where we drop the non-deficit requirement. Finad\shew
that if marginal values are not required to be nonincreasing, then idiearVCG
mechanism is worst-case optimal.

1 Introduction

In resource allocation problems, we want to allocate theuaes (oritemg to the
agents that value them the most. Unfortunately, agentsiatimins are private knowl-
edge, and self-interested agents will lie about their wadna if this is to their benefit.
One solution is tcauction off the items, possibly in @ombinatorialauction where
agents can bid on bundles of items. There exist ways of déetargithe payments
that the agents make in such an auction that incentivizeaghats to report their true
valuations—that is, the payments make the aucsimategy-proof One very general
way of doing so is to use the VCG mechanism [30, 6, 16]. (In plaiger, “the VCG
mechanism” refers to the Clarke mechanism, not to any othev&s mechanism. In
the specific context of auctions, the VCG mechanism is alssvkras the Generalized
Vickrey Auction?)

1The phrase “VCG mechanisms” is sometimes used to refer to thealad Groves mechanisms, which
includes the Clarke mechanism. The new mechanisms that we praptiss paper are in fact also Groves



Besides strategy-proofness, the VCG mechanism has setbealnice properties
in the context of resource allocation problems. (Throughae assuméree disposal
that is, not all items need to be allocated to the agents.} éfficient the chosen
allocation always maximizes the sum of the agents’ valuatiolt is also(ex-post)
individually rationat participating in the mechanism never makes an agent wdfse o
than not participating. Finally, it has rmon-deficitproperty: the sum of the agents’
payments is always nonnegative.

In many settings, another property that would be desirab{stiong) budget bal-
ance meaning that the payments sum to exa6tlySuppose the agents are trying to
distribute some resources among themselves that do notehpxevious owner. For
example, the agents may be trying to allocate the right tauseared good on a given
day. Or, the agents may be trying to allocate a resource liggt have collectively
constructed, discovered, or otherwise obtained. If thensgese an auction to allo-
cate these resources, and the sum of the agents’ paymetms @uttion is positive,
then this surplus payment must leave the system of the afenexample, the agents
must give the money to an outside party, or burn it)ivaedistribution of the surplus
payment €.g.each of then agents receivel/n of the surplus) will generally result in
a mechanism that is not strategy-proefd.in a Vickrey auction, the second-highest
bidder would want to increase her bid to obtain a larger tedistion payment). Unfor-
tunately, the VCG mechanism is not budget balanced: tylgidalere is surplus pay-
ment. Unfortunately, in general settings, it is in fact impible to design mechanisms
that satisfy budget balance in addition to the other delgnatoperties [21, 15, 14, 26].

In light of this impossibility result, several authors hanlgained budget balance by
sacrificing some of the other desirable properties [3, 9.82.7Another approach that
is perhaps preferable is to use a mechanism that is “moregddudalanced than the
VCG mechanism, and maintains all the other desirable pti@gerOne way of trying
to design such a mechanism is to redistribute some of the V&@npnt back to the
agents in a way that will not affect the agents’ incentivestfst strategy-proofness is
maintained), and that will maintain the other propertias2006, Cavallo [4] pursued
exactly this idea, and designed a mechanism that rediststa large amount of the
total VCG payment while maintaining all of the other deslegproperties of the VCG
mechanism. For example, in a single-item auction (wher&/tB& mechanism coin-
cides with the second-price sealed-bid auction), the ateugiistributed to bidder by
Cavallo's mechanism i$/n times the second-highest bid among bader thani’s
bid. The total redistributed is at most the second-highiesberall, and the redistribu-
tion to agent does not affect’s incentives because it does not depend’sown bid.
For general settings, Cavallo’'s mechanism considers hoall s agent could make
the total VCG payment by changing her bid (the resulting maditotal VCG payment
is never greater than the actual total VCG payment), andtrdalites] /» of that to the
agent (and therefore satisfies the non-deficit propérty).

mechanisms.

2In this mechanism, as well as in the mechanisms introduced ip#per, an agent may end up making
a negative payment (receiving a positive amount) overall.ekample, an agent may not win anything and
still receive a positive redistribution payment. Under tlestriction that payments must be nonnegative,
several authors have proposed mechanisms that maximize thes’agembined utility after deducting the
payments, in expectation [20, 5].



In this paper, we extend Cavallo’s technique in a limitedisgt We study alloca-
tion settings where there are multiple indistinguishaliisuof a single good, and each
agent’s valuation function is concave—that is, agents haménereasing marginal val-
ues. For this setting, Cavallo’s mechanism coincides witheghanism proposed by
Bailey in 1997 [3]. (For the case of a single item, the sameharism has also been
proposed by Portegt al. [28].) Cavallo’'s mechanism and Bailey’s mechanism are in
fact the same in any setting under which VCG satisf@&a&nue monotonicityfor the
following reason. Bailey’s mechanism redistributes toheagentl /» of the total VCG
payment that would result if this agent were removed fronsthetion. If the total VCG
payment is nondecreasing in agents, then, when computyrgqras under Cavallo’s
mechanism, the bid that would minimize the total VCG paynigtiie one that has a
valuation of0 for everything, which is equivalent to not participatingthre auction.
Hence, Cavallo’s mechanism results in the same redisipibygtayment as Bailey’s.
It is well-known that in general, the VCG mechanism does satisfy this revenue
monotonicity criterion [2, 7, 31, 32, 33] (this is in fact &dor a much wider class of
mechanisms [29]). However, in more restricted settingsh s the ones considered in
this paper, revenue monotonicity often holds.

From Section 2 to Section 9, we consider a slightly simpléirsgwhere all agents
haveunit demandi.e. they want only a single unit. We propose the familyliokar
VCG redistribution mechanisms. All mechanisms in this figrare efficient, strategy-
proof, individually rational, and never incur a deficit. Tfamnily includes the Bailey-
Cavallo mechanism as a special case (with the caveat thiat/Baand Cavallo’s mech-
anisms can be applied in more general settings). We therideran optimization
model for finding the optimal mechanism inside the familysdxon worst-case anal-
ysis. We convert this optimization model into a linear paygr Both numerical and
analytical solutions of this linear program are providedd éhe resulting mechanism
shows significant improvement over the Bailey-Cavallo naed$m (in the worst case).
For example, for the problem of allocating a single unit, whiee number of agents
is 10, the resulting mechanism always redistributes more &34 of the total VCG
payment back to the agents (whereas the Bailey-Cavallo amésiin redistributes only
80% in the worst case). Finally, we prove that this mechanism faét optimal among
all anonymous deterministic mechanisms (even nonlinear dhas}¥atisfy the desir-
able properties.

Around the same time, the same mechanism (in the unit den@tidgsonly) has
been independently derived by Moulin [2#Moulin actually pursues a different ob-
jective (also based on worst-case analysis): whereas gectole is to maximize the
fraction of VCG payments that are redistributed, Moulir$rto minimize the overall
payments from agents as a fraction of efficiency. It turnstbat the resulting mech-
anisms are the same. However, for our objective, the optmethanism does not
change even if the individual rationality requirement isjped, while for Moulin’s ob-
jective, dropping individual rationality does change thtilmal mechanism (but only
if there are multiple units).

In Section 9, we drop the non-deficit requirement and solvéhf® mechanism that
is as close to budget balance as possible (in the worst CHsis)mechanism is in fact

3We thank Rakesh Vohra for pointing us to Moulin's working pap



closer to budget balance than the best non-deficit mechanism

In Section 10, we consider the more general setting wherageats do not nec-
essarily have unit demand, but have nonincreasing margataés. We generalize the
optimal redistribution mechanism to this setting (bothhaahd without the individual
rationality constraint, and both with or without the norfidié constraint). In each case,
the worst-case performance is the same as for the unit deswitidg.

Finally, in Section 11, we consider multi-unit auctionshwaitit restrictions on the
agents’ valuations—marginal values may increase. Here how & negative result:
when there are at least two units, no redistribution medmangerforms better (in the
worst case) than the original VCG mechanism (redistrilgutinthing).

2 Problem Description

From this section to Section 9, we consider only the unit dedrgetting. (Units are
indistinguishable throughout the paper.) ketlenote the number of agents, and let
m denote the number of units. We only consider the case where n (otherwise
the problem becomes trivial in the unit demand setting). We assume that. and
n are always known. This assumption is not harmful: in envitents where anyone
can join the auction, running a redistribution mechanisryjpcally not a good idea
anyway, because everyone would want to join to collect patieredistribution.

In the unit demand setting, an agent’s marginal value forwmyafter the first is
zero. Hence, the agent’s valuation function correspondssiogle value, which is her
valuation for having at least one unit.

Let the set of agents bfu;, as,. .., a,}, Wherea; is the agent withith highest
report valuer,—that is, we havé, > 0, > ... > v, > 0. Letv; denote the true value
of a;. Given that the mechanism is strategy-proof, we can assyme;.

Under the VCG mechanism, each agent ameng. ., a,, wins a unit, and pays
Om1 for this unit. Thus, the total VCG payment equal$,,,+1. Whenm = 1, this is
the second-price or Vickrey auction.

We modify the mechanism as follows. After running the oradidCG mechanism,
the center returns to each agentsome amount;, agenta;’s redistribution payment
We do not allowz; to depend or;; because of thisy;’s incentives are unaffected by
this redistribution payment, and the mechanism remaimasegiy-proof.

3 Linear VCG Redistribution Mechanisms

We are now ready to introduce the family of linear VCG redlsttion mechanisms.
Such a mechanism is defined by a vector of constants, . . . , ¢,—1. The amount that
the mechanism returns to agents z; = co+c101 + oo +. ..+ ¢;—10;—1 + ;041 +
...+ cn_10,. Thatis, an agent receives, plusc; times the highest bidtherthan
the agent’s own bid, plus, times the second-highest other bid¢. The mechanism

“Moulin [24] also notes that dropping the non-deficit reqmiemt can bring us closer to budget balance,
but does not solve for the optimal mechanism.



is strategy-proof, because for dll z; is independent of;. Also, the mechanism is
anonymous and efficient.
It is helpful to see the entire list of redistribution paynsen
z1 = co + c102 + cal3 + 304 + ...+ cp_2lp_1 + Cr10p
22 = ¢+ C101 + co¥3 + 304 + ... + Cp20p 1 + 10y
23 = co + c101 + el + 304 + ...+ Cp_2Op_1 + Cn_10n
z4 = co + c101 + el + 303 + ... + cp_2Opn—1 + Cn_10p

zi=co+c101 + oo+ ... +¢ci—10;—1 + CVip1 + ... + Cp_10p

Zpn—2 = co +c101 + cal2 + c303 + ... + Cp_2lp_1 + Cr_10n

Zn—1 = Cg+c101 + cala + 303 + ... + Cp2Un 2+ Cr10n

Zp = co + €101 + caly + 303 + ... + cp_2ln_2 + Cr_10n—1

Not all choices of the constants, . . ., ¢, produce a mechanism that is individually
rational, and not all choices of the constants produce a amesim that never incurs

a deficit. Hence, to obtain these properties, we need to glace constraints on the
constants.

To satisfy the individual rationality criterion, each agemtility should always be
nonnegative. An agent that does not win a unit obtains ayuttiat is equal to the
agent’s redistribution payment. An agent that wins a uniaois a utility that is equal
to the agent’s valuation for the unit, minus the VCG paymigpt 1, plus the agent's
redistribution payment.

Consider agent,,, the agent with the lowest bid. Since this agent does not win a
item (m < n), her utility is just her redistribution paymen},. Hence, for the mech-
anism to be individually rational, the must be such that, is always nonnegative.
If the ¢; have this property, then it actually follows thatis nonnegative foeverysi,
for the following reason. Suppose there exists same n and some vector of bids
U1 > 09 > ... > 1, > 0such thatz; < 0. Then, consider the bid vector that results
from replacingv; by v;44 for all j > 4, and lettingo,, = 0. If we omit ¢,, from this
vector, the same vector results that results from omittinffom the original vector.
Thereforeg,,’s redistribution payment under the new vector should besthvee ag;'s
redistribution payment under the old vector—but this payni®negative.

If all redistribution payments are always nonnegative nttiee mechanism must
be individually rational (because the VCG mechanism isviddially rational, and the
redistribution payment only increases an agent’s utiliiyffierefore, the mechanism is
individually rational if and only if for any bid vectog,, > 0.

To satisfy the non-deficit criterion, the sum of the redmsition payments should
be less than or equal to the total VCG payment. So for any kitbvé, > o5 > ... >
0, > 0, the constants; should makes; + z3 + ... + 2z, < MUppt1-

We define the family of linear VCG redistribution mechanisimée the set of all
redistribution mechanisms corresponding to constanthat satisfy the above con-
straints (so that the mechanisms will be individually ratiband have the non-deficit
property). It turns out that some of tlag always need to be set iy as the following
claim demonstrates.



Claim 1 If ¢g,cq,...,c,_1 satisfy both the individual rationality and the non-deficit
constraints, them; = 0fori =0,...,m.

Proof: First, let us prove that, = 0. Consider the bid vector in which; = 0
for all . To obtain individual rationality, we must havg > 0. To satisfy the non-
deficit constraint, we must hawg < 0. Thus we knowcg = 0. Now, if ¢; = 0
for all ¢, there is nothing to prove. Otherwise, let= min{i|c; # 0}. Assume that
7 < m. We recall that we can write the individual rationality ctrait as follows:
Zp = ¢o + c101 + colo + 303 + ... + Cp_20p_2 + cn_10,_1 > 0 for any bid vector.
Let us consider the bid vector in whiéh = 1 for ¢« < j ando; = 0 for the rest. In
this casez, = ¢;, so we must have; > 0. The non-deficit constraint can be written
as follows: z; + z3 + ... + 2z, < m,,41 for any bid vector. Consider the same bid
vector as above. We hawe = 0 for i < j, because for these bids, tlih highest other
bid has valué, so all thec; that are nonzero are multiplied Iy Fori > j, we have
z; = ¢, because thgth highest other bid has value and all lower bids have value
0. So the non-deficit constraint tells us thatn — j) < mo,,4+1. Becausg < m,
Om+1 = 0, so the right hand side is 0. We also have- j > 0 becausg < m < n.
Soc; < 0. Because we have already establisheddhat 0, it follows thatc; = 0; but
this is contrary to assumption. So>m. =

Incidentally, this claim also shows thatiif = n — 1, thenc¢; = 0 for all 7. Thus,
we are stuck with the VCG mechanism (more details in ClaimFfpm here on, we
only consider the case where < n — 1.

We now give two examples of mechanisms in this family.

Example 1 (Bailey-Cavallo mechanism): Consider the mechanism corresponding
t0 ¢ny1 = 7F ande; = 0 for all otheri. Under this mechanism, each agent re-
ceives a redistribution payment &f times the(m + 1)th highest bid from another
agent. Hencegqy,...,a, 1 receive a redistribution payment éf,,,2, and the
others receive™v,,,1. Thus, the total redistribution payment(ig: + 1) ™, 2 +

(n —m —1)™0,,11. This redistribution mechanism is individually rationagcause
all the redistribution payments are nonnegative, and naerrs a deficit, because
(Mm+1) 2040+ (n—m—1) 2011 < N0y 41 = MOy 1. (We note that for this
mechanism to make sense, we need m + 2.)

Example 2: Consider the mechanism correspondingeto, 1 = —"—, cny2 =

—Ll)), andc; = 0 for all otheri. In this mechanism, each agent receives a

(n—m—-1)(n—m—2

redistribution payment of—2— times the(m+1)th highest reported value from other

n—m-—1
agents, minu% times the(m + 2)th highest reported value from other
agents. Thus, the total redistribution paymentis,, . ; — %ﬁmw. If

n > 2m + 3 (which is equivalent tg—2— > (nfn{f(l’)'zzljmd)), then each agent al-
ways receives a nonnegative redistribution payment, theigiechanism is individually
rational. Also, the mechanism never incurs a deficit, beedlis total VCG payment
is mb, 1, which is greater than the amountd,,, ;; — %ﬁm% that is
redistributed.

Which of these two mechanisms is better? Is there anotheranésh that is even
better? This is what we study in the next section.



4 Optimal Redistribution Mechanisms

Among all linear VCG redistribution mechanisms, we woulelto be able to identify
the one that redistributes the greatest fraction of thd ¥®G payment This is not

a well-defined notion: it may be that one mechanism rediste more on some bid
vectors, and another more on other bid vectors. We emphtsteve do not assume
that a prior distribution over bidders’ valuations is aghile, so we cannot compare
them based on expected redistribution. Below, we studyethrell-defined ways of
comparing redistribution mechanisms: best-case perfocmadominance, and worst-
case performance.

Best-case performance.One way of evaluating a mechanism is by considering
the highest redistribution fraction that it achieves. Gdesthe previous two exam-
ples. For the first example, the total redistribution paytmienm + 1), 12 +
(n—=m —1)20,41. Whenv,,.» = 0,41, this is equal to the total VCG pay-
mentmo,,.1. Thus, this mechanism redistribut&80% of the total VCG payment
in the best case. For the second example, the total redistiibpayment isno,, 11 —
%@m%. When,,,3 = 0, this is equal to the total VCG payment
mima1. Thus, this mechanism also redistribut€®% of the total VCG payment in
the best case.

Moreover, there are actually infinitely many mechanisms tédistribute100% of
the total VCG payment in the best case—for example, any coowmbination of the
above two will redistributd 00% if both ©,,, 1 o = 01,11 @Nddy, 13 = 0.

Dominance. Inside the family of linear VCG redistribution mechanism& say
one mechanisrdominatesanother mechanism if the first one redistributes at least as
much as the other fanybid vector. For the previous two examples, neither dommate
the other, because they each redistribit¢’ in different cases. It turns out that there
is no mechanism in the family that dominates all other meismas in the family. For
suppose such a mechanism exists. Then, it should domingitekxamples above. Con-
sider theremainingVCG payment (the VCG payment failed to be redistributed)e Th
remaining VCG payment of the dominant mechanism should Wwaenevers,,, . » =
Om+1 OF Upq3 = 0. Now, the remaining VCG payment is a linear function of the
(linear redistribution), and therefore also a polynomiaidtion. The above implies that
this function can be written &9.,,,+2 — Om+1) (Om+3) P (01, 02, . . ., U, ), WhereP is a
polynomial function. But since the function must be linelaag degree at mog), it
follows thatP = 0. Thus, a dominant mechanism would always redistributefah®
VCG payment, which is not possible. (If it were possible ntloair worst-case optimal
redistribution mechanism would also always redistribdtefsthe VCG payment, and
we will see later that it does not.)

Worst-case performance. Finally, we can evaluate a mechanism by considering
the lowest redistribution fraction that it guarantees. fhr first example, the total
redistribution payment igm + 1) 0,40 + (n — m — 1) 20,41, Which is greater

than or equal tqn — m — 1)24,,41. In the worst case, which is whel, > = 0,

n

5The fraction redistributed seems a natural criterion to @m@e good property of this criterion is that it
is scale-invariant: if we multiply all bids by the same postzonstant (for example, if we change the units
by re-expressing the bids in euros instead of dollars), weldvoot want the behavior of our mechanism to
change.



the fraction redistributed |§‘7n$‘1 For the second example, the total redistribu-
tion payment ismi,, 1 — —mmtm+2) g . which is greater than or equal to

(n—m—1)(n—m—2)

%). In the worst case, which is whel, 5 = U1,
(m+1)(m+2)

the fraction redistributed i$ — [ —— Since we assume that the number
of agentsn and the number of units: are known, we can determine which example
mechanism has better worst-case performance by comp&ergvd quantities. When
n = 6 andm = 1, for the first example (Bailey-Cavallo mechanism), the ticatre-
distributed in the worst case % and for the second example, this fractior%iswhich
implies that for this pair of: andm, the first mechanism has better worst-case perfor-
mance. On the other hand, when= 12 andm = 1, for the first example, the fraction
redistributed in the worst case % and for the second example, this fractior%@
which implies that this time the second mechanism has betiest-case performance.
In this paper, we compare mechanisms by the fraction of ttad Y&CG payment
that they redistribute in the worst case. This fraction idefined when the total VCG
payment is). To deal with this, technically, we define the worst-casastetiution
fraction as the largegt so that the total amount redistributed is at Idasines the total
VCG payment, for all bid vectors. (Hence, as long as the ttabunt redistributed is
at least) when the total VCG payment & these cases do not affect the worst-case
fraction.) This corresponds to the following optimizatiproblem:

mf)m+1 (1 —

Maximize k (the fraction redistributed in the worst case)

Subject to:

For every bid vectofi; > 05 > ... > 0, >0

zn, > 0 (individual rationality)

21+ 20+ .o+ 2z < MOy (NON-deficit)

21+ 22 + ... + 2 > kma,, 1 (WoOrst-case constraint)

We recall thatz; = cg + c191 + ca02 + ...+ ¢i—10i—1 + i1 + ... + Cn_10p

5 Transformation to Linear Programming

The optimization problem given in the previous section carrdwritten as a linear
program, based on the following observations.

Claim 2 The individual rationality constraint can be written aslobs: 7 ., ¢; >
Oforj=m-+1,...,n—1.

Before proving this claim, we introduce the following lemma

Lemma 1 Given a positive integet and a set of real constants, sa, . .., si, (s1t1+
Soto + ...+ spty > 0foranyty; > to > ... > ¢ > 0)ifand only if G°7_, s; > 0 for
j=1,2,...,k).

Proof: Letd; =t; —t;41 fori =1,2,...,k — 1, anddy = t;. Then s1t; + saote +
...+ spt, > 0foranyt; >ty > ... > t, > 0) is equivalent to ((Z}:lsi)dl +
(Zle si)do + ...+ (Ele s;)dy > 0 for any set of arbitrary nonnegativg). When



le s; > 0forj =1,2,...,k, the above inequality is obviously true. If for some
Jy >1_1 s <0, if we setd; > 0andd; = 0 forall : # j, then the above inequality
becomes false. Sp7_, s; > 0for j = 1,2,...,k is both necessary and sufficient.
|

We are now ready to present the proof of Claim 2.

Proof: The individual rationality constraint can be writtenas= cq + ¢101 + ca02 +
c303 + ...+ cp_90y_o + c,_10,_1 > 0 for any bid vectori; > 6o > ... > 0,1 >
o, > 0. We have already shown that = 0 for i < m. Thus, the above can be
Slmpllfled toz, = 07,L+11A)m+1 + Cm+2f]m+2 + ...+ Cn_gﬁn_g + Cn—lf)n—l >0
for any bid vector. By the above lemma, this is equivalendp®_ ., ¢; > 0 for
j=m+1,...,n—1. =m

Claim 3 The non-deficit constraint and the worst-case constraimt @ao be written
as linear inequalities involving only the and k.

Proof: The non-deficit constraint requires that for any bid vector 2o + ... + 2z, <
MOm+1, Wherez; = co + c101 + col2 + ... + ¢i—10;—1 + ¢iVip1 + - . . + Cr—10y, fOr
i=1,2,...,n. Because; = 0 for i < m, we can simplify this inequality to

Gm+10m+1 + Gmi20my2 + ..o+ @uly >0

Gme1 =m — (n—m — 1)cpmpr

¢ =—(t—1cic1 — (n—i)g,fori=m+2,....,n—1(whenm+2 >n — 1,
this set of equalities is empty)

gn = —(n—1)cp_1

By the above lemma, this is equivalent@j‘:m+1 gi>0forj=m+1,...,n
So, we can simplify further as follows:

Gm+1 >0 <= (n—m— 1)1 <m
i— i—1 .
Gmil + oo+ Gy > 0 = nZ;::Zfl ¢j + (n—m—i)emg; < mfor
1=2,....n—m-—1
j=n—1

Gme1t ...t 20 = n) ", <m

So, the non-deficit constraint can be written as a set of timemjualities involving
only theg;.

The worst-case constraint can be also written as a set drlimequalities, by
the following reasoning. The worst-case constraint rezgithat for any bid input
21+204+ ... +2z2, > kmﬁm_,_l, Wherezi = ¢Co + €101 + ¢cola + ...+ ¢_10;—1 +
CUi41+ ...+ cep_10, fori=1,2,... n. Because; = 0 for i < m, we can simplify
this inequality to

Qm+10m+1 + Qm+2ﬁm+2 +.. .+ Qnﬁn Z 0
Qm+1=(n—m—1)cper — km
Q; = (ifl)ci_l+(nfz‘)ci,fori:m+2,...,n71



Qn = (TL - 1)cn71

By the above lemma, this is equivalentzg’f:m+1 Q;>0forj=m+1,...,n.
So, we can simplify further as follows:

Qm+1 >0 <= (n—m— 1)1 > km

Qm+1+ .-+ Qmyi >0 — nz;zzi’l‘l ¢+ (n—m —i)epq; > kmfor
1=2,....n—m—1 _

Qmit+...+Qp >0 <— nZ;;Z;:lcj > km

So, the worst-case constraint can also be written as a sitealrlinequalities in-
volving only thec; andk. =

Combining all the claims, we see that the original optimaatproblem can be
transformed into the following linear program.

Variables: ¢, 41, Cma2, -y Cn-1,k
Maximize k (the fraction redistributed in the worst case)
Subject to:
1G> 0forj=m+1,...,n-1
km < (n—m—1)cpmy1 <m
km < nzzzzﬁ_lq +(m—m—i)epmes <mfori=2....n—m-—1

]
km < nZLZ@H cg<m

6 Numerical Results

For selected values of andm, we solved the linear program using Glpk (GNU Linear
Programming Kit). In this section, we compare the resultimgchanisms with the
Bailey-Cavallo mechanism.

6.1 Worst-case performance

In the table below, we present the results for a single unit£ 1). The second
column displays the fraction of the total VCG payment thatas redistributed in the
worst case by the worst-case optimal mechanism—that issplalys the valué — k.
(Displaying & would require too many significant digits.) Correspondyndhe third
column displays the fraction of the total VCG payment thatasredistributed by the
Bailey-Cavallo mechanism in the worst case (which is eqm%l)t
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n  Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 66.7% 66.7%
4 42.9% 50.0%
5 26.7% 40.0%
6 16.1% 33.3%
7 9.52% 28.6%
8 5.51% 25.0%
9 3.14% 22.2%
10 1.76% 20.0%
15 8.55e — 4 13.3%
20 3.62¢e — 5 10.0%
30 5.40e — 8 6.67¢ — 2
40 7.09¢ — 11 5.00e — 2

In the above table, we showed that when= 1, the worst-case optimal mechanism
significantly outperforms the Bailey-Cavallo mechanisnthia worst case. For larger
m(m =1,2,3,4,n = m + 2,...,30), we compare the worst-case performance of
these two mechanisms in Figure 1. We see that foranywhenn = m + 2, the worst-
case optimal mechanism has the same worst-case perforraarthe Bailey-Cavallo
mechanism (actually, in this case, the worst-case optineghanism is identical to the
Bailey-Cavallo mechanism). When > m + 2, the worst-case optimal mechanism
outperforms the Bailey-Cavallo mechanism (in the worsegas

0.9f v # aananett
0.8¢

0.7t

c
S
3
I
L
c
S
5
2 06} )
g —— 1 Unit WO
S -~ :
& o5t o a-- 1 Unit BC
@ ; —— 2 Units WO
|8 0.4} | v - 2 Units BC
2 A —— 3 Units WO
S 0.3}
= ° + - 3 Units BC
0.2 4 Units WO
o - 4 Units BC
01 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30

Number of Agents

Figure 1: A comparison of the worst-case performance of thiestacase optimal mech-
anism (WO) and the Bailey-Cavallo mechanism (BC).
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In Section 10, we will see that in the more general settingre/lagients have non-
increasing marginal values, the worst-case redistrilufiaction for the (generalized)
worst-case optimal mechanism is the same as for the unitigsetting. The same is
true for the Bailey-Cavallo mechanism. Hence, Figure 1 da#shange in this more
general setting.

6.2 Average-case performance

It is perhaps not surprising that the worst-case optimalhaeism significantly out-
performs the Bailey-Cavallo mechanism in the worst caseabge that is, after all,
the case for which the former has been designed. We can atepaze how much
the mechanisms redistribute on average (say, when the beddrawn i.i.d. from a
uniform distribution over0, 1]). In this case, the worst-case optimal mechanism does
not always outperform the Bailey-Cavallo mechanism. Thiefong table compares
the expected amount of VCG payment that fails to be redigtib by the worst-case
optimal mechanism and by the Bailey-Cavallo mechanisim=1).

n  Worst-Case Optimal Mechanism Bailey-Cavallo Mechanism
3 0.1667 0.1667
4 0.1714 0.1000
5 0.08889 0.06667
6 0.06912 0.04762
7 0.03571 0.03571
8 0.02450 0.02778
9 0.01255 0.02222
10 0.008006 0.01818
15 3.73%¢ — 4 0.008333
20 1.726e — 5 0.004762
30 2.614e — 8 0.002151
40 3.461le — 11 0.001220

We see that when is small, the Bailey-Cavallo mechanism outperforms thesivor
case optimal redistribution mechanism in expectationgpkéor the cases = 3, for
which the two mechanisms are the same). Whaen large ¢ > 8), the worst-case
optimal redistribution mechanism outperforms the Baiggwallo mechanism. The
results are similar for largern. That is, whem is small, the Bailey-Cavallo mechanism
outperforms the worst-case optimal redistribution meddranin expectation (except
for the caser = m + 2, for which the two mechanisms are the same). Whéxlarge
(e.g.n > 10form = 2; n > 13 form = 3; n > 16 for m = 4), the worst-case
optimal redistribution mechanism performs better tharBhéey-Cavallo mechanism.
In fact, this is not surprising: the expected amount thads fai be redistributed by the
Bailey-Cavallo mechanism vanishes @sn%). This is slower than the convergence
rate of theworst-caseredistribution fraction for the worst-case optimal medsan
(Corollary 1); and, of course, the average-case performafithe worst-case optimal
mechanism must be at least as good as its worst-case perfoemdhis also shows
that the worst-case optimal mechanism asymptoticallyerfiopms the Bailey-Cavallo
mechanism, even in the average case.
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6.3 A detailed example

Finally, let us present the result for the case= 5,m = 1 in detail. By solving the
above linear program, we find that the optimal values ford¢rarec, = 3+, c3 = —5,
andcy = % That is, the redistribution payment received by each agader the
worst-case optimal mechanism i% times the second highest bid among the other
agents, minu% times the third highest bid among the other agents, éguttmes the
fourth highest bid among the other agents.

agenta; receivesti o; —
agentas receivesﬁf;g —
agentag receivesﬁfjg —
agenta, receivesﬁf;z -
agentas receivesgﬁg — g0

O | FO | FO | (O |

The total amount redistributed by the worst-case optimailmaaism is%f;g + %'ﬁg —
04 + -+ 05; in the worst caseiL 0, is redistributed. Hence, the fraction of the total
VCG payment that is not redistributed is never more tllﬁ*@ﬁ: 26.7%.

As a specific example, for the bid vector = 4,05 = 3,03 = 2,04 = 1,05 = 1,
the total amount redistributed by the worst-case optimdistebution mechanism is
10y + 1503 — 1504 + 1505 = 13+ 1£2 — 151 + 1 = 1. The total amount
redistributed by the Bailey-Cavallo mechanisnz ig + ;2 = £2+ %3 = % Hence,
for this bid vector, the worst-case optimal redistributrmachanism redistributes more.

As another specific example, for the bid vectar = 4,05 = 3,03 = 2,04 =
2,05 = 1, the total amount redistributed by the worst-case optimdilstribution mech-
anismisii oy + 103 — 1504+ 1505 = 153+ 52— 7:2+ 11 = 3I. The total amount
redistributed by the Bailey-Cavallo mechanism is §gﬂl Hence, for this bid vector,
the Bailey-Cavallo mechanism redistributes more.

7 Analytical Characterization of the Worst-Case
Optimal Mechanism

We recall that our linear program has the following form:

Variables: ¢, 41, Cma2y -y Cn_1, k
Maximize k (the fraction redistributed in the worst case)
Subject to:

S 1G> 0forj=m+1,...,n—-1
Em<(n—m—1Decper <m

kmgnZ;zZﬂ*lcj—i—(n—m—i)cmH <mfori=2,....n—m-—1
j=n—1
km <n i—m+1 Ci <m

A linear program has no solution if and only if either the altjee is unbounded, or
the constraints are contradictory (there is no feasibletgmni). It is easy to see thatis
bounded above by 1 (redistributing more th&0% violates the non-deficit constraint).
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Also, a feasible solution always exists, for examjder 0 andc; = 0 for all i. So an
optimal solution always exists. Observe that the lineagmm model depends only
on the number of agents and the number of units:. Hence the optimal solution
is a function ofn andm. It turns out that this optimal solution can be analytically
characterized as follows.

Theorem 1 For any m andn with n > m + 2, the worst-case optimal mechanism
(among linear VCG redistribution mechanisms) is uniquer s mechanism, the
fraction redistributed in the worst case is

(n—l)
r=1——xm/J
n—1 /n—1
The worst-case optimal mechanism is characterized by tlening values for the:;:

CCDE e m) () 1 e
) <>Z< i)

j=m\ j

fori=m-+1,...,n—1.

It should be noted that we have proved= 0 for i < m in Claim 1.

Proof: We first rewrite the linear program as follows. We introdutav variables
L1, Tm42,- .-, Ln_1, defined byz; =37 ¢iforj=m+1,...,n—1. The
linear program then becomes:

Variables: z,, 41, Tma2, ..., Tn_1,k

Maximize k

Subject to:

Em<(n—m— Dz, <m

Em < (m+0)Tmeic1 +(n—m —i)xpmy; <mfori=2,.... n—m—1
km <nx,—1<m

i >0fori=m+1m+2,...,n—1

We will prove that for any optimal solution to this linear gram,k = k*. More-
over, we will prove that whet = k*, z; = >/ ciforj=m+1,...,n— 1
This will prove the theorem.

We first make the following observations:

(n—m—1)c;, 1

=(n—-m-—1) (n-m)(»71) 1 ) Zn—l (nfl)

(m1) 320, (57 (o) Z97mH 4

_ (n=m)(;n 1) n—1 (n—1y _ (n—1
- (Tl —m—= 1) (m+1)2"71 (nfl) (::1311) (Zj=m ( J ) - ( m ))

J

_ _ _ m _ _ _ 7”‘(717;,1)
B e T ) DA )
=m—(1—k")m=k*m

14



Fori=m-+1,...,n—2,
ic; +(n—i— 1)k,
,(71)i+m_1(n7m)(:;11) 1 n—1 /m—1
=1 n— — n— = j
ey e e ()

o eem(GT) 1 el e
+(n—i-1) (HUZ_Z,; GONGE) Zj:i+1( j )
=TT eem) (T n—1 m—1
— Z”.L;I (7:,;1) (77/:1) Zj:l ( J )

o (—1)”’"71(n—m)(;:11) i+1 n—1 n—1
—(n—i-1) ('““1)2;;1 - () m—ioD) Zj:i—H ( j )
_ ot eem) (7))

ST
— (_1)7,+m—1m(1 _ k*)

Finally,
(n—1)c

n—1

B )" -m) (A7) n-1 (n—1
= (n — 1) (n—1) Zn—l (n;1)1 (::}) Zj:’n,—l ( 7 )
j=m
= (1)t (1 — k*
(-1)

Summarizing the above, we have:
(n—m—1)c;, 1 =k*m

( (n—m = 2)ch s = m(l— k)
(M +2)c, 5+ (n—m — 3)c, 15 = —m(1 — k)
( (n—m = 4)ch s = m(l — k)

=)
= (S (1 - k)

Letz] = Z{:mH ciforj=m+1,m+2,...,n— 1, the first equation in the
above tells us thatn — m — 1)}, | = k*m.

By adding the first two equations, we det +2)x;;, | + (n —m —2)x}, o, = m.

By adding the first three equations, we gett-3)x;;, , o, +(n—m—3)x;, 3 = k*m.

By adding the first equations, where= 2,..., n—m—1, we get(m+i)z;, ; |+
(n—m—d)x),  , =mifiiseven(m+i)zy, ., 1+ (n—m—i)x), ;= k'mifi
is odd.

Finally by adding all the equations, we get)_, = mif n —misevennz;_; =
k*m if n —m is odd.

Thus, for all of the constraints other than the nonnegatiednstraints, we have
shown that they are satisfied by setting= 2% = >°/_ _, ¢; andk = k*. We next
show that the nonnegativity constraints are satisfied bgetisettings as well.
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Z;L 11 (n'l) _ 1 Zn 1 i!(n—1—1)!
("7/1) T 0 £ej=i Gin—1—j)! =

n—2 il(n—1— 'L)' n—2 (i+1)!(n—1-i—-1)! 1 Z;L:;Jrl (”j 1)
1+1 ZJ i W = L+1 Z_} i G+HD)I(n—1—7—1)! — i+1 (G
This implies that the absolute value @f is decreasing as increases (if the:!
contains more than one number). We further observe thaighe$c; alternates, with
the first element;, . posrtrve Sor} =37 . 416 = 0forall j. Thus, we have
shown that these, = =} together Wlthk: = k* form a feasible solution of the linear
program. We proceed to show that it is in fact the unique ogitolution.

First we prove the following claim:

Form+1<ii+1<n-1, wehave—

Claim4 Ifk,2;,i=m+1,m+2,...,n—1 satisfy the following inequalities:

l%mg(n—m—l):fcmﬂgm
km < (m+)&mpio1 + (n—m —i)Emy; <mfori=2,....n—m—1
fcmgmﬁn,lgm
k> k*

then we must have that = 2* andk = k*.

PROOF OF cLAIM. Consider the first inequality. We know that—m —1)x, | =
k*m, so(n —m — l)xm_H >km > k'm = (n—m— Da xy, 1. It follows that
Tmy1 = Ty g (n—m —150).

Now, consider the next inequality fér= 2. We know that(m + 2)x, | + (n —
m—2)xy, o = m. Itfollows that(n —m —2) &y, 12 < m—(Mm+2)&p41 < m—(m+
2)xh 1 = (n—m—=2)x} 19,508 me2 <2 o (=2<n—m—1=n-—m-2#0).

Now consider the next inequality for= 3. We know thaim +3)xz}, o+ (n—m—
3)xy, 15 = m. Itfollows that(n —m — 3)&,,43 > km—(m+3)&mas > k*m— (m+
3)h 40 = (Nn—m—=3)x},,3,80Zm43 > 25 3(i =3 <n—-m—-1=n-m-3#0).

Proceeding like this all the way up o= n —m — 1, we get thatt,,,.; > 7, ;
if i is odd andz,,4; < z;, ., if i is even. Moreover if one mequallty is strict, then all
subsequent inequalities are strict. Now, if we can pm,yel =z} _,, itwould follow

that thex! are equal to the; (which also implies that = k™).

n—11

We consider two cases:

Case 1 n — m is even. We haven — meven= n—m — 1 odd= Z,_1 >
x)_,. We also haven — m even= nz;_; = m. Combining these two, we get
m=nx;,_1 <NTp_1 <M=>=Tp_1 =2 _1.

Case 2 n —m is odd. In this case, we havg,_; < z_,, andnz}_; = k*m.

n
Then, we havek*m < km < n&,_1 <nz)_; =k'm= 2,1 =z} _;.
This completes the proof of the claim.

It follows that if l%,fci, i =m+1m+2,...,n — 1is a feasible solution and
k > k*, then since all the inequalities in Claim 4 are satisfied, vusthavet; = x}

andk = k*. Hence no other feasible solution is as good as the one Hesin the
theorem. =m
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Knowing the analytical characterization of the worst-cagémal mechanism pro-
vides us with at least two major benefits. First, using thesmfilas is computationally
more efficient than solving the linear program using a gdrauigpose solver. Second,
we can derive the following corollary.

Corollary 1 If the number of unitsn is fixed, then as the number of agentsn-
creases, the worst-case fraction redistributed linearyneerges tol, with a rate of

convergencezL (That is,lim,, o 111‘;# = =, That s, in the limit, the fraction that

is not redistributed halves for every add|t|0nal agent.)

We note that this is consistent with the experimental datattfe single-unit case,
where the worst-case remaining fraction roughly halvesheane we add another
agent. The worst-case fraction that is redistributed uniderBailey-Cavallo mech-
anism also converges tbas the number of agents goes to infinity, but the conver-
gence is much slower—it does not converge linearly (thateiing #¢' be the frac-

tion redistributed by the Bailey-Cavallo mechanism in therst case fom agents,

1—kC .
limy, 00 <= ;;gl = lzn%HOQnLJrl = 1). We now present the proof of the corollary.

Proof: When the number of agentssis the worst-case fraction redistributedis =

n—1
1- % When the number of agentssis+- 1, the fraction becomes; , ; =
j=m J
1- Z( )(n) For n sufficiently large, we will have™ — mn™~! > 0, and hence
j=m \J

1— kn+1 _ (WLI) Zn 1 (n 1) _ . gn—1 Zm I(n;I) and 2"—17m(n71)m_1 <
1—kx (”;11) Zj . (;’) n—m  on_ Z;":Ol (7) ’ n—m 2n =

1k -1 e
e < 2= (becausd’s) < n'if j < ).

— n—m 2" —mnm—1

i ; n_ 2" '-m@n-1)""' 1 . n gn—1 .
Since we havéim,, R o = 1, andlim, =
1 ; . -k 1
5, it follows thatlim,, o, —— =3 =

8 Worst-Case Optimality Outside the Family

In this section, we prove that the worst-case optimal reédigion mechanism among
linear VCG redistribution mechanisms is in fact optimal itie worst case) amoral
redistribution mechanisms that are deterministic, anamnysn strategy-proof, efficient
and satisfy the non-deficit constraint. Thus, restricting attention to linear VCG
redistribution mechanisms did not come at a loss.

To prove this theorem, we need the following lemma. This lensmot new: it was
informally stated by Cavallo [4]. For completeness, we pn¢st here with a detailed
proof.

Lemma 2 A VCG redistribution mechanism is deterministic, anonysrend strategy-
proof if and only if there exists a functigh: R*~! — R, so that the redistribution
payment; received by; satisfies

zi = f(01,02, ..+, 0im1,Vig1s - - o, On)
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for all 7 and all bid vectors.

Proof: First, let us prove the “only if” direction, that is, if a VC&distribution mech-
anism is deterministic, anonymous and strategy-proof there exists a deterministic
functionf : R*~! — R, which makes; = f(01,02,...,9_1,0s1,...,0,) foralli
and all bid vectors.

If a VCG redistribution mechanism is deterministic and ayroous, then for any
bid vectoro, > v, > ... > 9,, the mechanism outputs a unique redistribution pay-
ment list: z1, 22, ..., z,. LetG : R™ — R™ be the function that maps , 05, ..., 0,
to 21, 29, ..., 2z, for all bid vectors. LetH (i, x1,xo,...,x,) be theith element of
G(x1,xa,...,x,), SO thatz; = H(i,01,02,...,0,) for all bid vectors and all <
i < n. Because the mechanism is anonymous, two agents shoulder¢ice same
redistribution payment if their bids are the same. So; ¥ v;, H(i, 01, 02,...,0,) =
H(j,01,02,...,0,). Hence, ifwe lefj = min{t|t; = 0;}, thenH (i, 01, 0o, ..., 0p) =
H(j, 01,09, ...,00).

Let us defineK : R® — N x R™ as follows: K (y, 1, 22, ..., Tpn—1) =
[4, w1, wa,...,w,], wherewy, wa, ..., w, arey, zy,xs,...,x,_1 sorted in descend-
ing order, andj = min{t|w; = y}. ({t|lw, = y} # 0 because € {wy,wa, ..., w,}).

Also let us defingF’ : R™® — R by F(0;, 01,02, ..., 0i—1, Vi1, - -, Op) =

Ho K(’f}i, @1, 172, ce ,f]i_h @i+17 ce ,f)n) = H(mm{th?t = ﬁi},ﬁl,f}g, ce ,’[),L)
= H(i,01,09,...,0,) = z;. Thatis,F is the redistribution payment to an agent that
bids9; when the other bids am , v, ..., 0;—1,0i41,-- -, Up.

Since our mechanism is required to be strategy-proof, amdspace of valua-
tions is unrestrictedz; should be independent a@f by Lemma 1 in Cavallo [4].
Hence, we can simply ignore the first variable inputtplet f(x1, 29, ..., 2n_1) =
F(O,Il,CCz, A ;In—l)- So, we haV&i = f(’[)l,’[}g, - ,’LA}i_l,’lA),j_;'_l, ey ’Dn) for all bid
vectors and. This completes the proof for the “only if” direction.

For the “if” direction, if the redistribution payment reeed by, satisfiesz; =
f(o1,02,...,0;—1,Dit1,...,0,) for all bid vectors and;, then this is clearly a de-
terministic and anonymous mechanism. To prove strateggfpess, we observe that
because an agent’s redistribution payment is not affegtéabbown bid, her incentives
are the same as in the VCG mechanism, which is strategy-proaf

Now we are ready to introduce the next theorem:

Theorem 2 For any m andn with n > m + 2, the worst-case optimal mechanism
among the family of linear VCG redistribution mechanisnwasst-case optimal among
all mechanisms that are deterministic, anonymous, styapegof, efficient and satisfy
the non-deficit constraint.

While we needed individual rationality earlier in the papérs theorem does not
mention it, that is, we cannot find a mechanism with bettersivoase performance
even if we sacrifice individual rationality. (The worst-easptimal linear VCG redis-
tribution mechanism is of course individually rational.)

Proof: Suppose there is a redistribution mechanism (when the ruwbunits ism
and the number of agentssi3 that satisfies all of the above properties and has a better
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worst-case performance than the worst-case optimal IME&3 redistribution mecha-
nism, that is, its worst-case redistribution fractiois strictly greater tham*.

By Lemma 2, for this mechanism, there is a functibon R*~! — R so that
z; = f(01,02,...,0i—1,0it1,...,0,) forall i and all bid vectors. We first prove that
f has the following properties.

Claim5 f(1,1,...,1,0,0,...,0) = 0if the number ofs is less than or equal ta.

PROOF OF cLAIM. We assumed that for this mechanism, the worst-case riédistr
tion fraction satisfie > k* > 0. Ifthe total VCG payment is, the total redistribution
payment should be i[fm:, x] (non-deficit criterion). Consider the case where all agents
bid 0, so that the total VCG payment is alSo Hence, the total redistribution pay-
ment should be ik - 0,0]—that is, it should b®. Hence every agent’s redistribution
paymentf(0,0,...,0) must be0.

Now, lett; = f(1,1,...,1,0,0,...,0) where the number ofs equals;. We
provedty = 0. If £,_1 = 0, consider the bid vector where everyone bidsThe total
VCG payment isn and the total redistribution paymentig'(1,1,...,1) = nt,,—1 =
0. This corresponds t6% redistribution, which is contrary to our assumption that
k > k* > 0. Now, considerj = min{ilt; # 0} (which is well-defined because
tn—1 # 0). If j > m, the property is satisfied. |f < m, consider the bid vector where
0v; = 1fori < j andv; = 0 for all otheri. Under this bid vector, the first agents
each get redistribution paymesfjt ; = 0, and the remaining — j agents each gej.
Thus, the total redistribution payment(is — j)¢,. Because the total VCG payment for
this bid vector i), we must havén — j)t; = O Sot; =0 (j < m < n). Butthisis
contrary to the definition of. Hencef(1,1,...,1,0,0,...,0) = 0 if the number of
1sis less than or equal to. o

Claim 6 f satisfies the following inequalities:

I%mg(n—m—l)tmﬂgm
km < (m4 Otmyic1 +(n—m — )ty <mfori=2,3....n—m-—1
km<nt,_1 <m

Heret; is defined as in the proof of Claim 5.

PROOF OF CLAIM. Forj = m + 1,...,n, consider the bid vectors whefe = 1
for i < j andv; = 0 for all otheri. These bid vectors together with the non-deficit
constraint and worst-case constraint produce the abow# setqualities: for example,
whenj = m + 1, we consider the bid vectay, = 1 fori < m + 1 and; = 0 for all
otheri. The firstm + 1 agents each receive a redistribution paymertt,pf= 0, and all
other agents each receitjg 1. Thus, the total VCG redistribution (g —m — 1)t,,41.
The non-deficit constraint givéa —m—1)t,,+1 < m (because the total VCG payment
is m). The worst-case constraint gives— m — 1)t,,.1 > km. Combining these two,
we get the first inequality. The other inequalities can bainied in the same way.

We now observe that the inequalities in Claim 6, togethelnwit- k*, are the same
as those in Claim 4 (where thgare replaced by the;). Thus, we can conclude that
k = k*, which is contrary to our assumptidn> &*. Hence no mechanism satisfying
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all the listed properties has a redistribution fractionagee thank* in the worst case.
|

So far we have only talked about the case where m + 2. For the purpose of
completeness, we provide the following claim for the= m + 1 case. (We assume
n > m in the unit demand setting.)

Claim 7 For anym andn withn = m + 1, the original VCG mechanism (that is, re-
distributing nothing) is (uniquely) worst-case optimal@mg all redistribution mecha-
nisms that are deterministic, anonymous, strategy-pmeffi;ient and satisfy the non-
deficit constraint.

We recall that whem = m + 1, Claim 1 tells us that the only mechanism inside the
family of linear redistribution mechanisms is the origivlG mechanism, so that this
mechanism is automatically worst-case optimal inside fdmsily. However, to prove
the above claim, we need to show that it is worst-case op@maingall redistribution
mechanisms that have the desired properties.

Proof: Suppose a redistribution mechanism exists that satidfie$ the above prop-
erties and has a worst-case performance as good as theabig§l®& mechanism, that
is, its worst-case redistribution fraction is greater tloarequal to0. This implies that
the total redistribution payment of this mechanism is alsvagnnegative.

By Lemma 2, for this mechanism, there is a functibon R*~! — R so that
z; = f(¥1,02,...,0i—1,0ix1,...,0,) forall < and all bid vectors. We will prove that
f(iEl,I27...7l‘n_1) =0 forall T1 > x> ...> a1 >0.

First, consider the bid vector whefg = 0 for all <. Here, each agent receives a
redistribution paymenf (0,0, ...,0). The total redistribution payment is then
nf(0,0,...,0), which should be both greater than or equal tby the above obser-
vation) as well less than or equal @using the non-deficit criterion and the fact that
the total VCG payment i8). It follows that (0,0, ...,0) = 0. Now, let us consider
the bid vector wheré, = x; > 0 andv; = 0 for all otheri. For this bid vector, the
agent with the highest bid receives a redistribution payroéri(0,0,...,0) = 0, and
the othem — 1 agents each receiv&z1,0,...,0). By the same reasoning as above,
the total redistribution payment should be both greatem thraequal td) and less than
or equal ta0, hencef(z1,0,...,0) = 0forall z; > 0.

Proceeding by induction, let us assuffie, =, . .., zx,0,...,0) = 0forall z; >
T9 > ... >z > 0, for somek < n — 1. Consider the bid vector wheig = x; for
i < k+ 1, andd; = 0 for all otheri, where thex; are arbitrary numbers satisfying
X1 > xy > ... > xp > TR > 0. For the agents with the highekt+ 1 bids,
their redistribution payment is specified fyacting on an input with only non-zero
variables. Hence they all receiveby induction assumption. The other— & — 1
agents eachreceizy, zo, ..., Tk, xx+1,0,...,0). The total redistribution payment
is then(n — k — 1) f(x1,29,..., 2%, 2k+1,0,...,0), which should be both greater
than or equal td), and less than or equal to the total VCG payment. Now, in this
bid vector, the lowest bid i8 becausé: + 1 < n. But sincen = m + 1, the total
VCG payment isnd, = 0. So we havef(zy,zs,. .., 2k, Tk+1,0,...,0) = 0 for
all zy > 29 > ... > xp > x4 > 0. By induction, this statement holds for all
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k < n—1; whenk +1 =n— 1, we havef(z1,z9,...,2p_2,2,-1) = 0 for all
T1 > Tg > ... > Ty_o > T,—1 > 0. Hence, in this mechanism, the redistribution
payment is always; that is, the mechanism is just the original VCG mechanisnu

Incidentally, we obtain the following corollary:

Corollary 2 No VCG redistribution mechanism satisfies all of the foltayvi deter-
minism, anonymity, strategy-proofness, efficiency, atrdng) budget balance. This
holds for anyn > m + 1.

Proof: For the casen > m + 2: If such a mechanism exists, its worst-case perfor-
mance would be better than that of the worst-case optimaafitvCG redistribution
mechanism, which by Theorem 1 obtains a redistributiontivacstrictly less thar.

But Theorem 2 shows that it is impossible to outperform thechanism in the worst
case.

For the casen = m + 1: If such a mechanism exists, it would perform as well
as the original VCG mechanism in the worst case, which insglet it is identical to
the VCG mechanism by Claim 7. But the VCG mechanism is nobiigfiy) budget
balanced. =

9 Worst-Case Optimal Mechanism When Deficits Are
Allowed

In the previous section, we showed that even if the individationality requirement
is dropped, the worst-case optimal redistribution mecdraniemains the same. In this
section, we consider dropping the non-deficit requiremamd, try to find the redistri-
bution mechanism that deviates the least from budget bal@ndhe worst case).

We define thémbalanceto be the absolute difference between the total redistri-
bution and the total VCG payment, and define ittndalance fractiorto be the ratio
between the imbalance and the total VCG payment. Our goalisgriimize the worst-
case imbalance fraction. Finding the optimal linear me@rarcorresponds to the
following optimization model:

Minimize k, (the imbalance fraction in the worst case)

Subiject to:

For every bid vectof; > 05 > ... > 0, >0

zn, > 0 (individual rationality)

|21 + 22+ ... + 2z, — MOppy1| < kgm,,41 (imbalance constraint)

We recall thatz; = cg + c191 + ca02 + ... + ¢i—10i—1 + 041 + .. + Cn_10p

The imbalance constraint can also be written as

(1 - kd)m@nL+l <ztzm+t...+2z, < (1 + kd)mﬁnL+l

The above optimization model can be transformed into a tipeagram, based on
the following observations.
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Claim 8 If ¢g, ¢y, ..., c,_1 satisfy both the individual rationality and the imbalance
constraints, them; = 0fori =0,...,m.

The proof is a slight modification of the proof of Claim 1.

Proof: First, let us prove that, = 0. Consider the bid vector in which, = 0 for

all . To obtain individual rationality, we must havg > 0. To satisfy the imbalance
constraint, we must havg, < 0. Thus we know, = 0. Now, if ¢; = 0 for all 7,
there is nothing to prove. Otherwise, let= min{i|c; # 0}. Assume thaj < m.
We recall that we can write the individual rationality caaétt as follows:z,, = ¢g +
101 + co0g + 303 + ... + ¢p_2Up_o + 10,1 > 0 for any bid vector. Let us
consider the bid vector in which; = 1 for i < j and®; = 0 for the rest. In this
casez, = c;j, SO we must have; > 0. The imbalance constraint requires that :
z1+ 22+ ...+ 20 < (14 kq)mi,41 for any bid vector. Consider the same bid vector
as above. We have = 0 for i < j, because for these bids, thi#h highest other bid
has valued, so all thec; that are nonzero are multiplied by Fori > j, we have
z; = ¢, because thgth highest other bid has valde and all lower bids have valuge
So the imbalance constraint tells us thatr — j) < (14 kq)mo,11. Becausg < m,
Om+1 = 0, so the right hand side is 0. We also have- j > 0 becausg < m < n.
Soc; < 0. Because we have already establisheddhat 0, it follows thatc; = 0; but
this is contrary to assumption. So>m. =

Claim 9 The imbalance constraint can be written as linear ineqiesgiinvolving only
thec; andkg.

The proof is a slight modification of the proof of Claim 3.

Proof: The imbalance constraint requires that for any bid vedtor- kq)mt.,+1 <
21420+ 42, < (1 + kd)m@m+1, wherez; = cog+c101 +colo+. ..+ 10,1+
Cilit1 + ...+ Cno10p fori =1,2, ... n. Because; = 0 for i < m, we can simplify
this inequality to

Gm+10m+1 + Gmy20ma2 + ...+ qnip >0

Gm+1 = (n—m —1D)eppr — (1 — kqg)m

¢ =(G{—-1)ci.1+(n—d)e,fori=m+2,...,.n—1

qn = (n - 1)Cn—l

Qm—&—lﬁm—o—l + Qm+2@m+2 +...+ Qn@n S 0

Qm+1=(n—m—1)cme1 — (L+ kg)m

Qi=(—1Dcic1+ (n—d)e, fori=m+2,...,n—1

Qn = (TL - 1)Cn—l

By Lemma 1, this is equivalent tEg:mH ¢ >0forj =m+1,...,nand

Z:m+l Q; <0forj=m+1,...,n. So, we can simplify further as follows:
(I—kgm<(n—m—1cpe1 < (1 +kg)m

(1—k:d)mSnzgizﬁ*lcj—i—(n—m—i)cmﬂ < (l+kgmfori=2,... ,n—
m—1
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(1—kaym < n Y220t e < (1+kg)m
So, the imbalance constraint can also be written as a setedriinequalities in-

volving only thec; andk;. =

Combining all the claims (together with Claim 2), we see it original opti-
mization problem can be transformed into the following &énprogram.

Variables: ¢;11, Cmao, -5 Cn_1, ka
Minimize k4 (the imbalance fraction in the worst case)
Subject to:

S e >0forj=m+1,...,n—1

(1—ka)m < (n—m—1)epmpr < (1+ka)m

(I—ka)m < ”Zizszl ci+t(n—m—i)cpmqs < (14+kgymfori=2,...,n—
m—1

(1= ka)ym <n Y020l e < (1+ ka)m

For this model, it is easy to see that is bounded below by. Also, k; = 1
andc; = 0 for all ¢+ form a feasible solution. So an optimal solution always tsxis
As in the case where deficits are not allowed, the optimalteslican be analytically
characterized. The characterization is the following:

Theorem 3 For anym andn with n > m + 2, the worst-case optimal mechanism with
deficits (among linear VCG redistribution mechanisms) isjue. For this mechanism,
the imbalance fraction in the worst case is

. (")
Ky = =
Zj:erl (J)

The worst-case optimal mechanism with deficits is charatdrby the following val-
ues for the;:

C;: =

’ Z‘Z;L:m-‘rl (?) (nz_l) Jj=i ‘7

fori=m-+1,...,n— 1.

L 2e)F e m) (i) 1 Z(n_l)

From Claim 8 it follows that; = 0 for i < m.

Proof: Leta = k};/(1—k*), wherek* is the worst-case optimal redistribution fraction
in Theorem 1. To avoid ambiguity, we refer to thg in Theorem 1 ag’*, and to
thec here asc?*. Inspection reveals thaf* = 2ac* for all i. We have shown in
Theorem 1 that

Ly 2 0forj ot L1
E'm < (n—m—1)cgs, <m
k*mgnZ;sznfflc;*’*+(n—m—i)c%j_i <mfori=2...,n—m—1
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k*mSnZJ"I *<m

j=m+1 €
Sowehave
zm+1 i >0f0r]—m+1 .,n — 1 («is positive)
20k*m < (n—m — 1)c, | < 2am
2ak*m<nzg Zi’l 1c?*+(n—m—z) e <2amfori=2,....n—m—1
2ak*m<nzg Zz—&-ll c; * < 2am

A sequence of algebraic manipulations reveals thét* = (1 — k) and2a =
(1+ k3). Hencek; and thecd* form a feasible solution, because we have

fm+1z >0forj=m+1,...,n—1

(1—kpm<(n—m _1)m+1—(1+kjl)

(1-k)m <n ;:Zi; P+ (n—m—i)elr , < (1+kjmfori=2,... ,n—
m—1

(1—-Fkym< nzj_:ﬂ_l i < < (1+k)m

~ We proceed to show that it is in fact the unique optimal solutiSupposé; and
k4 form a feasible solution, and; < k;. We have

(1—k)m< A —kg)m < (n—m—1)ém < (1+ l%d)m < (1+k5)m
(1 —ky)m < (1—ka)ym <nYZ ;’;1; Yei 4 (n—m —i)émys < (14 kg)m <
(I+ky)mfori=2,....n—m-—1

(1—k)m < (1- kd)m <nYITrle < (L+kgym < (L+k))m

We introduce new variables,, 1, 2,42, . . ., 2,1, defined byr; = 5~ { a1 C
forj=m+1,...,n— 1. The above inequalmes can be rewritten in terms;pfwe
have

E'm < (n—m—1zpme <m

E'm < (m+i)xmyi-1+ (n—m—d)xpme; <mfori=2,....n—m-—1

kK'm < nz,_1<m

However, in Claim 4, we proved that these inequalities hawmigue solution.
Therefore, there is only one value that eaclé;,cindk, can have. This proves thaj
and thecd* form the unique optimal solution. m

a = k}/(1 — k*) can be interpreted as the ratio between the imbalance dracti
of the worst-case optimal mechanism with deficits (amongdirVCG redistribution
mechanisms) and the imbalance fraction of the worst-catimalmechanism without
deficits. This ratio can be expressed as follows:

DO G0 D Dy (s B DI (7L01 ()

o = k* 1-— k* - n Y\ 0 r - [ n
KSR > N Bl DAY () M DA ()
For fixedn, this ratio increases as increases. (This is because as we decrease
m by 1, the ratio of the additional terms in the fraction decrea)swhenm =1,
a = ;ﬁ (for large n, roughly ); whenm = n — 2, a = 5 (for largen,

roughly 1). Hence, ifm is small (relatlve ton), the worst-case optimal linear VCG
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Figure 2: The value ofi fromm = 1ton — 2

redistribution mechanism with deficits is much closer todrtdalance than the worst-
case optimal mechanism without deficitsyif is large (relative tar), they are about
the same. On the other hand, whens small relative tom, then the worst-case optimal
redistribution fraction is large even with the non-defigtiuirement. This means that
the non-deficit constraint does not come at a great costré&shows how changes
as a function ofn andn.

Now we prove that the worst-case optimal linear VCG redistibn mechanism
with deficits is in fact optimal amondgll redistribution mechanisms that are determin-
istic, anonymous, strategy-proof and efficient.

Theorem 4 For any m and n with n > m + 2, the worst-case optimal mechanism
with deficits among linear VCG redistribution mechanisms tie smallest worst-case
imbalance fraction among all VCG redistribution mecharssimat are deterministic,
anonymous, strategy-proof and efficient.

As in the case of Theorem 2, there is no redistribution meishamvith a smaller
worst-case imbalance fraction even if we sacrifice indiaidationality.

Proof: Suppose there is a redistribution mechanism (when the suwibunits ism

and the number of agentsii$ that satisfies all of the above properties and has a smaller
worst-case imbalance fraction than that of the worst-casienal linear VCG redistri-
bution mechanism with deficits—that is, its worst-case irabaé fractiori, is strictly

less thark.
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By Lemma 2, for this mechanism, there is a functibn R*~! — R so that
zi = f(01,02,...,0;-1,0;41,...,0p) for all ¢ and all bid vectors. The following
properties off follow from straightforward modifications of the proofs ofdim 5 and
Claim 6.

Claim 10 f(1,1,...,1,0,0,...,0) = 0if the number ofs is less than or equal ta.

Claim 11 f satisfies the following inequalities:

(1—ka)m < (n—m—Dtmer < (1 + kg)m
(1 —ka)m < (m+ i) tmaio1 + (0 —m — i)tmas < (1 + kq)m for
1=2,3,....n—m—1
(1 = ka)ym < ntp_1 < (1+ ka)m

t, = f(1,1,...,1,0,0,...,0) where the number dfs equalsi

Letz; = 5=t fori=m+1,...,n — 1. Sincekq < kj, we have

k*m < 5= (1 —ka)ym < (n—m — Dy < i(l—i—fcd)m <m

k*m < i(l—kd)m <(m+i)xmric1+(n—m—1i)Tmy < %(lelAfd)m <m
fori=2,3,....n—m—1 .

k*m < 5= (1 —ka)m < nap_1 < 5= (14 ka)m <m

By Claim 4, the above system of inequalities cannot hold. ddem mechanism
satisfying all the listed properties has an imbalance ivadess thark}; in the worst
case. =

For the purpose of completeness, we note the following glaihich follows from
a straightforward modification of the proof of Claim 7.

Claim 12 For any m andn with n = m + 1, the original VCG mechanism (that
is, redistributing nothing) is (uniquely) the worst-caggimal mechanism with deficits
among all redistribution mechanisms that are determinjsthonymous, strategy-proof
and efficient.

Proof: Suppose a redistribution mechanism exists that satidfie$ the above prop-
erties and has a worst-case performance as good as theab¥§lc mechanism, that
is, its worst-case imbalance fraction is less than or equad®%.

By Lemma 2, for this mechanism, there is a functibpn R*~! — R so that
z; = f(01,02,...,0i—1,0i+1,...,0,) forall i and all bid vectors. We will prove that
f(.’L'l,.’EQ,...,ZL'n,1) =0forallzy >29>... > 2,1 > 0.

First, consider the bid vector whefge = 0 for all i. Here, each agent receives a
redistribution paymenf (0,0, ...,0). The total redistribution payment is then
nf(0,0,...,0), which should bé, because the total VCG paymentigunder100%
imbalance fraction, the imbalance is sfi)l. It follows that f(0,0,...,0) = 0. Now,
let us consider the bid vector whefe = z; > 0 andd; = 0 for all otheri. For
this bid vector, the agent with the highest bid receives astébution payment of
£(0,0,...,0) =0, and the othen—1 agents each receiy&z4,0, . ..,0). By the same

26



reasoning as above, the total redistribution payment shed, hencef (z1,0,...,0) =
Oforall z; > 0.
Proceeding by induction, let us assurfiery, zs, ..., 2x,0,...,0) = 0 for all

1 > X9 > ... > 1w > 0, for somek < n — 1. Consider the bid vector where
v; = x; fori < k+ 1, ando; = 0 for all otheri, where thex; are arbitrary num-
bers satisfyings; > z2 > ... > x > x41 > 0. For the agents with the highest
k + 1 bids, their redistribution payment is specified pycting on an input with only
k non-zero variables. Hence they all receivéy induction assumption. The other
n — k — 1 agents each receivfx1, x2, . .., Zk, Tk+1,0, ..., 0). The total redistribu-
tion payment is therin — &k — 1) f(z1, 22, ..., Tk, Tk+1,0,...,0). Now, in this bid
vector, the lowest bid i becausé: + 1 < n. But sincen = m + 1, the total VCG
payment ismd,, = 0, which forces the total redistribution payment to (he So we

havef(z1, 22, ..., %k Tky1,0,...,0) =0forall zy > z9 > ... >z > 2541 > 0.
By induction, this statement holds for &l< n — 1; whenk + 1 = n — 1, we have
f(ml,xg, . 71'”_271:”_1) = 0 forall 1> X9 >...> Ty_o > 1 > 0. Hence, in

this mechanism, the redistribution payment is alwaythat is, the mechanism is just
the original VCG mechanism. =

10 Multi-Unit Auction with Nonincreasing Marginal
Values

In this section, we consider the more general setting whegeagents have nonin-
creasing marginal values. (Units remain indistinguisegbAn agent’s bid is now a
vector of m elements, with thgth element denoting this agent’s marginal value for
getting herjth unit (and the elements are nonincreasing)inThat is, the agent’s val-
uation for receivingj units is the sum of the firgt elements. Let the set of agents be
{a1,as,...,a,}, whereq, is the agent with théth highest initial marginal value (the
marginal value for winning the first unit).

We still consider only the case where < n — 2, because ifn > n — 1, then
the original VCG mechanism is worst-case optimal, both &itld without deficits (we
will show this in Claim 19).

The VCG mechanism requires us to find the efficient allocatiRetause marginal
values are nonincreasing, this can be achieved by the foltpgreedy algorithm. At
each step, we sort the agents according to their upcominginaalues (their val-
ues for winning their next unit), and allocate one unit to #gent with the highest
such value. We continue until there are no units left, or #reaining agents all have
upcoming marginal values of zero (in this case, we simplgwthaway the remaining
units). Given that marginal values are nonincreasing, tfieving greedy algorithm
is effectively the same (in terms of the allocation processytall the marginal val-
ues (not just those for upcoming units), and accept themadnedsing order. Because
marginal values are nonincreasing, when we accept one of, tttés marginal value
does in fact correspond to that agent’s utility for recegvamother unit at that point.
In the proofs below, this greedy algorithm will provide a fuderiew of how units are
allocated.
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In the efficient allocation, only agents, . .., a,, can possibly win, and the VCG
payments are determined by the bidsagf. .., a.,+1 (because when we remove an
agent, only the topr remaining agents can possibly win).

We will generalize the worst-case optimal mechanism (bath &nd without deficits)
to the current setting, and show in each case that the gerestahechanism has the
same worst-case performance. This implies that there dutesxist another redistribu-
tion mechanism with better worst-case performance (becswsh a mechanism would
also have better worst-case performance in the more spanifidemand setting).

Let us useA to denote the set of all agents, add ; to denote the set of agents
other tham;. Because the mechanisms under consideration are strptegf-agents
can be expected to report truthfully; hence, we do not makegdistinction between
an agent and her bid. We define the following functions:

e VCG:P(A) =R

For any subsef of 4, let VCG(S) be the total VCG payment when only the
agents inS participate in the auction.

e F:P(A) —-R
For any subsef of A, let E(S) be the total efficiency (that is, the total utility

not taking payments into account) when only the agentS participate in the
auction.

ec:P(A)xA—R
For any subsefS of A and anya € S, lete(S,a) be the utility (not taking

payments into account) of agemtwhen only the agents ifi participate in the
auction. We note thalt(S) = > s e(S, a).

e U:P(A) x N — P(A)
For any subsef of A, any integer (1 < i < |5]), letU(S,i) be the set that
results after removing the agent with thil highest initial marginal value in
S from S. (If there is a tie, this tie is broken according to the oraiorder
A,y ..., an.)
e R:P(A)x N—=R
For any subsefS of A, any integeri (0 < i < |S| — m), let R(S,i) =
LS R(U(S, 4), i — 1) if i > 0, andR(S, 0) = VCG(S). We emphasize
that this is a recursive definition: for> 0, R(S, ¢) is obtained by computing, for
eachj with1 < j <m+14, R(U(S,j),i — 1) (that is, the value of the function
R after removing thgth agentinS from S, and decreasingby one), and taking
the average. For = 0, it is simply the total VCG payment if only the agents
from S are present. Shortly, we will prove some properties of thigction that
clarify its usefulness to our mechanism.

LetV; = R(A, i) forall i (0 < i < n — m). We first prove several claims.

Claim 13 If we haveS, S € P(A), S C S, and|S| = |S| + 1, then for any € S, we
haveE(S) — E(S — {a}) < E(S) — E(S — {a}). Thatis,E is submodular.
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Proof: Suppose: wins k units when only agents i participate in the auction. We
modify a’s bid by settinga’s marginal value for winning thék + 1)th unit to0. This
modification does not change the value of the left-hand ditleednequality, and it will
never increase the value of the right-hand side of the inggu@herefore, it suffices
to prove that the inequality holds after the modification.

After the modificationg still wins exactlyk units when only agents if partici-
pate in the auction (as can be seen, for example, by consigtré greedy allocation
algorithm that we presented previously). Na&(S) — E(S — {a}) is the increase in
the total efficiency due ta winning & units (rather than other agents winning these
units). That is, it equals the utility of (not counting payments) minus the sum of the
k upcoming marginal values in the greedy allocation algariththat is, the marginal
values that rankm — k 4 1)th tomth among marginal values extracted from the bids
of the agents ir6 — {a}. Similarly, £(S) — E(S — {a}) equals the utility ofx mi-
nus the sum of thé upcoming marginal values—that is, the marginal values #uait r
(m — k + 1)th tomth among marginal values extracted from the bids of the agent
S — {a}. But thek upcoming values in the second case must be smaller thanithose
the first case, becauseC 5. Hence,E(S) — E(S — {a}) < E(S) — E(S — {a}).
|

The next claim shows that in the setting that we are considerevenue is nonde-
creasing in agents. (This is not true in more general setfigg, 2, 7, 31, 32, 33].)

Claim 14 For any S, S € P(A), if S C S, thenVCG(S) < VOG(S). That is,
revenue is nondecreasing in agents.

Proof: We will prove the following equivalent statement instefat:any S, S € P(A),
if S C § andS has exactly one more element théinwe havel’ CG(S) < VCG(S).

SupposeS = {a},aj, ..., a5}, Wherea; is the agent with théth-highest initial
marginal value inS. Since we know that only the agents frarh to a/, can possi-
bly win any units, we havé/CG(S) = 377 (E(S — {aj}) — 20,4, €(5,a})) =
S E(S = {al}) = (m — 1)E(S).

Leta be the additional agent ifi (S — S = {a}). If @ has a higher initial marginal
value thana,,, then the agents with the: highest initial marginal values iy are
d,...,a,_, anda. Itfollows thatV CG(S) = S " E(S — {a}}) + E(S — {a}) —

(m —1)E(8) = X"V E(S — {d}}) + E(S) — (m — 1)E(S). By Claim 13, for
i=1,...,m—1, E(S - {a}}) - B(S) > E(S - {a}}) — E(S). Hence, we have
VOG(S) = 327" B(S —{af}) + E(S) — (m = DE(S) > 27" E(S — {aj}) ~
(m—1)E(S)+E(8) > Y1 B(S—{a}})— (m—1)E(S)+E(S—a,) = VCG(S).
If @ has a lower initial marginal value thar), , the agents with the: highest initial

marginal values inS would stiIIAbea’h coan. By Claim 13, we have/CG(S) =
Y7 E(S —{al}) = (m = 1)E(S) = X7 B(S — {a}}) — (m — YE(S) + E(S ~
{af,}) = X7V E(S — {al}) — (m — 1)E(S) + E(S — {a},}) = 7" B(S —
{a;}) — (m —1)E(S)+ E(S —{al,}) =VCG(S). =

Claim 15 ForanyS € P(A),0 <i < |S|-m—2,andm+i+2 < j <|S|, we
haveR(S,i) = R(U(S, j),1).
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Proof: We prove this claim by induction oh Fori = 0 andj > m + 2, we have
R(S,i) = VCG(S) = VCG(U(S,j)) = R(U(S,j),i), because, as we noted ear-
lier, the total VCG payment depends only on the agents wighhtlghestmn + 1 ini-
tial marginal values inS, so removing thegith agent does not change the total VCG
payment. Let us assume that we have proven thati fer k, if j > m + k + 2,
R(S,k) = R(U(S,4), k). Now let us consider the case where= k£ + 1. By def-
inition, R(S,k + 1) = 2 S " R(U(S, 1), k). Whenj > m +i+2 =

m + k + 3, we can use the induction assumption (using the factthatl > m +
kE+2) to show thatR(U(S,1),k) = R(U ( (S,0),5 — 1),k). Hence,R(S,k +

1) = g St R(U(S, D), k) = T Z””’““ RUU(S,1),j — 1), k) =
m+k:+1 Em’%“ R(U(U(S,j4),1),k) = R(U(S,j), k+1). (Inthe second-to-last step,
the same agents are removed in a different order, althouwghgdknts’ indices change
as other agents are removed.) Hence the claim is also triefdr+ 1. =

Claim 16 ForanyS, S € P(A), 0 <i < |S| —m, if S C S, thenR(S,i) < R(S,i).
That is, R is nondecreasing in agents.

Proof: We prove this claim by induction on Wheni = 0, using Claim 14R(S,i) =
VCG(S) < VOG(S) = R(S,i). Let us assume that we have proven that the claim
is true fori = k, thatis,R(S, k) < R(S,k) if S C S. Now let us consider the case
wherei = k + 1. If S andS are the same, the claim is trivial. Now suppose that
S has one more agent thah and that this additional agent has #th highest initial
marginal value inS. If ¢ > m+ k +2,U(S,j) C U(S j)forallj <m+k+1. By

the induction assumption, we hat& s, k + 1) = m+k+1 Zm+k+1 R(U(S,4), k) >
m+k¢+1 Em+k+1 (U(57])7 k) = R(Sv k + 1)

Ifg <m+k+1,U(Sj) C U, forj <q—1,andU(S,j —1) C
U(S,j5) forg+1 < j < m + k + 1. Using the induction assumption, we have
R(S.k+ 1) = oy X7 RWUS,G)0) = ey EQ” RU(S,9).k) +
ST gy RU(S. ), W)+ RWU(S, 0), k) = it L1 BU(S,9), )

m+k . m k .
T gt RS, i=1), k)t ropiep R(S, k) > ey 250 RS, ), b)
+ 7 RU(S,m 4k +1),k) = R(S, k + 1).
So, if $ has one more element thahthenR(S, k+1) < R(S, k+1). It naturally

follows that if S has even more elements, then we still h&(&, k+1) < R(S, k+1).
|

Claim 17 For any S € P(A), R(S,4) is nonincreasing irn. In particular, setting
S = A, V; is nonincreasing in.

Proof Using Clla|m 16R(S,i+ 1) = 2 S R(U(S, ), 1) <
m+1+1 Zm—i_H_ ( ) = R(S,Z) un

Claml8 For0 <i<n-m 123 L R(AZj, i) =(n—m—1—9)Vi+ (m+
1+ i) Vig1.
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Proof: Using Claim 15, we havd__; R(A_;,i) = Y7 R(A_;, i) +
S s RA i) = (m 41+ DR(Ai+ 1) + (n—m — i — DR(A, i) =

m+i+1O)Viyi+(n—m—i—1)V,. =

Now that we have established these basic properti&s ofe are ready to introduce
the generalization of the worst-case optimal redistrirutmechanism (both with or
without deficits) to the setting where agents have nonirsingamarginal values over
units.

Theorem 5 When agents have nonincreasing marginal values over uoitgany m
andn withn > m + 2, the worst-case optimal redistribution fraction (withalgficits)

is ( _1)
k* =1 ___\mJ
n—1 /n—1
Zj:m ( 7 )
(the same as in Theorem 1), and the worst-case imbalanceédinagvith deficits) is

v Um)

(the same as in Theorem 3).

In each case, the following is a worst-case optimal mechmani® agenta;, re-
distribute -1 ZJ my1 CGR(A—i,j —m — 1). Here, thec; from Theorem 1 are used
to maX|m|ze the worst-case redistribution fraction withdeficits, and the:; from
Theorem 3 are used to minimize the worst-case imbalancédraarhen deficits are
allowed. The mechanisms obtained in this way in fact gerzeréthe mechanisms from
Theorem 1 and Theorem 3.

Proof: In each case, the mechanism is strategy-proof becauseagaatis redistribu-
tion payment is independent of her own bidl_(; does not contaim;). It is determin-

istic, efficient and anonymous. Becau%(eA i»j —m — 1) is nonincreasing i, and
Z; my1€; = 0fori=m-+1,. — 1, it follows by Lemma 1 that the mechanism

is also individually rational.

Now, we recall that in the unit demand setting, for any bidtee¢; > v, > ... >
On, the total amount redistributed by the worst-case optimedimanism is
Z;’ ;z+1 cj((n—7)v;+jo;41), which is always at leagt' m,, 1 and at mostno,, +1
when we use the}‘ from Theorem 1; and which is always at leg@st- k) mo,,,1 and
at most(1 + k)mom41 When we use the; from Theorem 3. We next show that
analogous bounds apply to the more general mechanismshwiiccomplete the
proof.

For the more general mechanisms, the total redistributiiymnt is
m Zl 1ZJ m+1 J R(A—i,j—m—1) = = ZJ m+1 ]ZL 1R( —i,j—m—1)=
L Zj g1 € ((n = 3)Vj—m—1+3Vj_m). This expression is very similar to the total
red|str|buted by the mechanisms in the unit demand settimgonly differences are
that eachi; has been replaced by thé_,,_;, and there is an additional factek.
Now, the bounds for the unit demand setting holdsoynonincreasing sequencef
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and, by Claim 17, we havéy > Vi > ... > V,_,,_1. Hence, L 3707 c¥((n —
IWVi-m—1 + jVj—m) isin [k*Vp, Vo] when we use the; from Theorem 1, and in
[(1=Fk7)Vo, (1+Fk) Vo] when we use the; from Theorem 3. Becaudé = R(A,0) =

VCG(A) is the total VCG payment, this proves the resultm

So far we have only talked about the case where m + 2. For the purpose of
completeness, we provide the following claim for thed m + 1 case.

Claim 19 For any m and n with n < m + 1, the original VCG mechanism (that
is, redistributing nothing) is worst-case optimal, bothttwdr without deficits, among
all redistribution mechanisms that are deterministic, apmous, strategy-proof and
efficient.

Proof: Suppose there is a mechanism that satisfies all the despatyperties and has
a worst-case performance that is at least as good as the VCGamism. Because the
mechanism is strategy-proof, the redistribution paymeneived by an agent should
be independent of her own bid. Also, if a bid profile resultaitotal VCG payment
of 0, then under this profile, the total redistribution paymentsinalso be). (If the
objective is to maximize redistribution without deficitsegative total redistribution
would result in worse performance than VCG, and positivésteiution would violate
the non-deficit constraint. If the objective is to minimiretialance, either negative or
positive redistribution would result in worse performanican VCG. These arguments
are analogous to those in the proofs of Claim 7 and Claim 12.)

For the purpose of this proof only, we introduce the follogvimotations. If an agent
has marginal valué for every unit among the first units, and) for any further units,
we denote her bid by. These are the only bids that we will use in this proof. For
b; € N, let f(by1,ba,...,b,—1) be the redistribution payment received by an agent if
the other agents’ bids atg, ..., b,_1.

We will prove that for any set of nonnegative integersbs, . . . , b, 1, if Z?;ll b; <
m, we havef (by,...,b,-1) = 0. We will do so by proving by induction oh (k < m)
the claim that for any set of nonnegative integerds, . .., b,_1, if 2?2_11 b; < k,we
havef(by,...,bp—1) =0.

For the casé& = 0, let us consider the case where all the agentg)b&b that the
total redistribution payment is f (0,0, ...,0). Because the total VCG payment(s
the total redistribution must b& thereforef (0, 0, ..., 0) must beD.

Now let us assume that for any set of nonnegative integgers,, ..., b, 1, if
S by < k, we havef(by, ..., b, 1) = 0. Letd;,bh,..., b, , be any set of non-
negative integers that satisfi ;:11 b, = k+1. Consider the bid profile (consisting of
n bids) formed by thé, and oned. The redistribution payment received by the agent
that bids0 is then f (b}, b5, ...,b,,_;). We note that some of thé may equald as
well; by anonymity, the payment for these agents should besétme. The redistribu-
tion payment received by any agent that does no0lisd) by the induction assumption.
Hence, the total redistribution is a positive multiplefgd’, b, ..., b/, _;). Given that
k + 1 < m, the total VCG payment i8, so it must be thaf (b],b5,...,b,_;) = 0,
completing the proof by induction.

Having proved this, we now find an example with positive tM8IG payment but
zero total redistribution, which will complete the proof.eWecallm > n — 1. Let
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us consider the bid profile where one agent hids- n + 2 and the other agents each
bid 1. Then, the total redistribution payment(s — 1)f(m —n + 2,1,...,1) +
N——
n—2
f(1,...,1) = 0 (since the previous claim applies to botbm —n +2,1,...,1) and
N—— N——

n—1 n—2
f(1,...,1)). However, the total VCG payment is positive. Hence, thelmaaism has
N——
n—1
a redistribution fraction oH% and an imbalance fraction d00% on this instance.
| |

11 General Multi-Unit Auctions

In Section 10, we showed how the results for the unit demattilgean be generalized
to the setting where agents have nonincreasing marginaesadver the units. The
natural next question is whether they can be generalized fewéher. In this section,

we study multi-unit settings without any constraint on theéders’ valuations—that
is, marginal values can be increasing (but they cannot bativeg units can always
be freely disposed of). We show that when there are at leasutits, the original

VCG mechanism (that is, redistributing nothing) is worase optimal, both with and
without deficits. (When there is only a single unit, then therdg must have unit
demand, so the previous results do apply.)

Claim 20 In multi-unit auctions without any restrictions on agentgluations, when
the number of units: is at least2, the original VCG mechanism (that is, redistributing
nothing) is worst-case optimal, both with or without deficeamong all redistribution
mechanisms that are deterministic, anonymous, indiviguational, strategy-proof
and efficient.

We emphasize that unlike some of the earlier proofs in thepahis proof does
require individual rationality.

Proof: Claim 19 already established that for- 2 < m, the original VCG mechanism
is worst-case optimal even when we do assume nonincreasangimal values, so it
suffices to consider only the case where 2 > m. Suppose there is a mechanism that
satisfies all the desirable properties and has a worst-aagamance that is at least as
good as the original VCG mechanism. Because the mechanistraiegy-proof, the
redistribution payment received by an agent should be iedégnt of her own bid.

Also, if a bid profile results in a total VCG payment @fthen under this profile,
the total redistribution payment must also (béotherwise, the performance is worse
than that of the original VCG mechanism).

For the purpose of this proof only, we introduce the follogvinotations. If an
agent has marginal valuefor every unit among the first: — 1 units, and marginal
value1 for the mth unit, we denote her bid b§g,. If an agent has marginal valde
for the first unit, andd for any further units, we denote her bid ,. If an agent
has marginal valu® for all units, we denote her bid by. These are the only bids
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that we will use in this proof. Fob; € {Bj, B2,0}, let f(by,bs,...,b,—1) be the
redistribution payment received by an agent if the othentgjdids areby, ..., b,_1.
We needf (b1,bs,...,b,—1) > 0to ensure individual rationality.

We will prove the following:

e £(0,0,...,0)=0
£(B1,0,...,0) =0
£(B5,0,...,0) =0

e f(B1,B5,0,...,0)=0

For £(0,0,...,0), let us consider the case where all the agentbgb that the
total redistribution payment is f(0,0,...,0). Because the total VCG payment(s
the total redistribution must b& thereforef (0, 0, ..., 0) must be0.

For f(By,0,...,0), let us consider the case where one agent Bidsaind all the
other agents bid, so that the total redistribution paymentiis— 1) f(B1,0,...,0) +
f£(0,0,...,0) = (n—1)f(B4,0,...,0). Because the total VCG paymenbighe total
redistribution must b@, thereforef (B, 0, ...,0) must be0. The same argument can
be used to show that( B, 0,...,0) = 0.

For f(B1, B2,0,...,0), let us consider the case where one agent Bigdstwo
agents bidB, and all the other agents bid so that the total redistribution payment is
(n—3)f(Bl, BQ7 BQ, 0,... ,0)—|—2‘]C(Bl7 Bg, 0,... ,O)—Ff(BQ, B27 o,..., 0) However,
the total VCG payment is stil) for these bids (the agents that big} win; if one of
them is removed, we can do no better than to still allocate wneto the otherB,
agent, and nothing to the other agents—hence daclagent pay%). Hence, the
total redistribution must bé. Becausef is honnegative everywhere, it follows that
f(Bi, Bs,0,...,0) must equal.

Having proved this, we now find an example with positive tM@lG payment but
zero total redistribution, which will complete the proofetus consider the bid profile
where one agent bidB;, one agent bid$3;, and the other agents all bid Then,
the total redistribution payment i&» — 2)f(B;, Bs,0,...,0) + f(B1,0,...,0) +
f(B2,0,...,0) = 0. However, the total VCG payment is positive (because we can
accept at most one of the, bid and theB, bid). Hence, the mechanism has a redis-
tribution fraction of0% and an imbalance fraction @b0% on this instance. =

12 Conclusions

For allocation problems with one or more items, the wellaknd/ickrey-Clarke-Groves
(VCG) mechanism (also known as the Clarke mechanism or tme@bzed Vickrey
Auction) is efficient, strategy-proof, individually ratial, and does not incur a deficit.
However, the VCG mechanism is not (strongly) budget baldngenerally, the agents’
payments will sum to more than If there is an auctioneer who is selling the items, this
may be desirable, because the surplus payment corresporelenue for the auction-
eer. However, if the items do not have an owner and the agemtsierely interested
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in allocating the items efficiently among themselves, anplsis payment is undesir-
able, because it will have to flow out of the system of agents2d06, Cavallo [4]
proposed a mechanism that redistributes some of the VCG gatylnack to the agents,
while maintaining efficiency, strategy-proofness, indivéal rationality, and the non-
deficit property. In this paper, we extended Cavallo’s téghe in a restricted setting.
We studied allocation settings where there are multipléestimyuishable units of a sin-
gle good, and the agents have nonincreasing marginal vglesthis specific setting,
Cavallo’s mechanism coincides with a mechanism propos&hiigy in 1997 [3].) We
first considered the simpler unit demand setting. We progragamily of mechanisms
that redistribute some of the VCG payment back to the agéditsnechanisms in the
family are efficient, strategy-proof, individually ratiah and never incur a deficit. The
family includes the Bailey-Cavallo mechanism as a speciaéc We then provided an
optimization model for finding the optimal mechanism—thattiee mechanism that
maximizes redistribution in the worst case—inside the fgnaihd showed how to cast
this model as a linear program. We gave both numerical anigtére solutions of this
linear program, and the (unique) resulting mechanism stsigrsficant improvement
over the Bailey-Cavallo mechanism (in the worst case). Véwgut that the obtained
mechanism is worst-case optimal amadiganonymous deterministic mechanisms that
satisfy the above properties. Using similar techniquesaise found the worst-case
optimal mechanism when deficits are allowed. We generabp#id mechanisms to the
setting where the agents do not necessarily have unit derbahdo have nonincreas-
ing marginal values over units. In each case, the worstjsafermance of the gener-
alized mechanism is the same as in the unit demand settiddyemrce the generalized
mechanisms are also worst-case optimal. Finally, for muritt auctions without any
restriction on agents’ valuations, we showed a negativaltreso mechanism is better
than the original VCG mechanism in the worst case.

Incidentally, all of our results can also be applied to mulit reverseauctions, in
which a single buyer needs to procureunits fromn potential sellers (agents). (We
can also view units as tasks that need to be performed by #eta) For example,
consider the setting in which each agent has an obligatisopply one unit (perform
one task), buin < n, thatis, not every unitis actually needed. In this case, averan
a forward auction for the —m rights not to supply a unit. Hence, all of our results hold
with m replaced by — m. This example is analogous to the unit demand setting, but
our results can also be applied to more general valuatioctifums. \We note, however,
that this prior-obligation view corresponds to a differantion of individual rationality
than the one typically used in reverse auctions.

One direction for future research is to extend these resoltombinatorial auc-
tions (with distinguishable items). Another direction ésdonsider objectives that are
not worst-case. Yet another direction is to consider whetthis mechanism has ap-
plications to collusion. For example, in a typical collusischeme, there istaidding
ring consisting of a number of colluders, who submit only a sifgte[13, 22]. If
this bid wins, the colluders must allocate the item amongstniselves, perhaps using
payments—but of course they do not want payments to flow outeofing.

This work is part of a growing literature on designing medbars that obtain good
results in the worst case. Traditionally, economists hawestiy focused either on de-
signing mechanisms that always obtain certain propertiash( as the VCG mecha-
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nism), or on designing mechanisms that are optimal witheessfp some prior distri-
bution over the agents’ preferences (such as the Myersdioal25] and the Maskin-
Riley auction [23] for maximizing expected revenue). Sonmrarrecent papers have
focused on designing mechanisms for profit maximizationgisvorst-case competi-
tive analysis€.9.[12, 1, 19, 11]). There has also been growing interest in &ségmh of
onlinemechanisms [10] where the agents arrive over time and desishust be taken
before all the agents have arrived. Such work often alscstakeorst-case competitive
analysis approach [18, 17]. It does not appear that therdiret connections between
our work and these other works that focus on designing mésimesrthat perform well
in the worst case. Nevertheless, it seems likely that futesearch will continue to
investigate mechanism design for the worst case, and hiypafaoherent framework
will emerge.
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