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ABSTRACT is useful in settings where no currency has (yet) been established

We investigate the problem of allocating items (private goods) amonéss may be the case, for example, in a peer-to-peer network, as

competing agents in a setting that is both prior-free and payment- eIL%S. in drEarlly o.ther n;]ulnagent systems); OI: whgre p aymentg are
free. Specifically, we focus on allocating multiple heterogeneous Pronibited by law; or where payments are otherwise inconvenient.

items between two agents with additive valuation functions. Our Epecmcally, we focus 9?1 alcljc()j(_:atlng Tulqplefhete_rogengous |tt;_ams
objective is to design strategy-proof mechanisms that are compet- etween t(\j/vo agents with a |t;ve vahuatl_on unhctlons. ur objec-
itive against the most efficient (first-best) allocation. We intro- UV IS 10 design strategy-proof mechanisms that are competitive

duce the family of linear increasing-price (LIP) mechanisms. The adainst the efficient (first-best) allocation. o
LIP mechanisms are strategy-proof, prior-free, and paymeef-fre !t Témains an open question to give an elegant characterization
and they are exactly the increasing-price mechanisms satisfying aoff michanlsz th:t are Stratc(jegy-pr(éof, p(r:;or-freek, andrf)ayrmeet-lf
strong responsiveness property. We show how to solve for compet-§ or th e problem that we stu 3;])- an hwe_ 0 not know IOV\II to solve
itive mechanisms within the LIP family. For the case of two items, [oF thé most competitive such mechanism in general. In our at-
we find a LIP mechanism whose competitive ratio is near optimal [€MPS to design competitive mechanisms, we introduce the family
(the achieved competitive ratio (5328, while any strategy-proof ~ ©f linéar increasing-price (LIP) mechanismshich are based on a
mechanism is at mogt841-competitive). As the number of items certain artificial currency. The LIP mechanisms are strategy-proof,
goes to infinity, we prove a negative result that any increasing-price prlor-freeh, and paymﬁnt—frllreel_.“l/\;e shlothowhto solve 1;or competi-
mechanism (linear or nonlinear) has a maximal competitive ratio of V€ Mechanisms within the LIP family. For the case of two items,
0.5. Our results imply that in some cases, it is possible to design we find a LIP mechanism whose competitive ratio is near optimal

good allocation mechanisms without payments and without priors. (th€ achieved competitive ratio 5828, while any strategy-proof
mechanism is at mogt.841-competitive). Thus, at least for the

case of two items, it does not come at much of a loss to focus only

Categones and SUbJeCt Descrlptors on LIP mechanisms. As the number of items goes to infinity, we
J.4 [Computer Applications]: Social and Behavioral Sciences—  prove a negative result that any increasing-price mechanism (linear
Economics 1.2.11 [Distributed Artificial Intelligence ]: Multia- or nonlinear) has a maximal competitive ratio0os.
gent Systems By proposing specific competitive strategy-proof mechanisms
that do not rely on payments, our paper also helps to answer a
General Terms question that has recently been drawing the attention of computer
_ scientists:Are priors and payments necessary for designing good
Economics, Theory mechanisms?The idea of designing strategy-proof mechanisms
without payments that achieve competitive performance was ex-
Keywords plicitly framed by Procaccia and Tennenholtz [22], in their paper

titted Approximate Mechanism Design Without Mon&hat paper
carries out a case study on locating a public facility for agents with
single-peaked valuations. (The general idea of approximate mech-
1. INTRODUCTION anism design without payments dates back further, at least to work
We investigate the problem of allocating items (private goods) by Dekelet al.[10] in a machine learning framework.)
among competing agents in a setting that is both prior-free and Our paper considers this question in the different context of al-
payment-free. That is, we do not assume that we have knowl- location mechanismsUnlike the models studied in the above two
edge about the distribution of the agents’ valuations. We also do papers [10, 22], where a consensus agreement may exist, when we
not allow the mechanism to specify any monetary payments. This are considering the allocation of private goods, the agents are nec-
essarily in conflicE Nevertheless, it turns out that even here, some

Mechanism design, prior-free, payment-free
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positive results can be obtained. Thus, we believe that our resultsitem j (v§ > 0). Additivity and risk neutrality imply that under
provide additional insights for this line of research. Of course, it allocation(p1,ps, - . ., pm), agentl’s utility equalszj pjvjl. and
is beyond the scope of this paper to answer the above question i”agentZ’s utility equalsy™ . (1 — p;)v?
its general form; rather, we will be content to focus specifically on “F(rthermore, we reqire that the agents’ valuations are normal-
designing prlor-freg, payment-free allqcatlon mechanisms. ized. That is, the type spaB&consists of vectorv, va, . . . , Um)
Resource allocation mechanisms with payments have been studyyith s~ 4. = 1. As a result, an agent's utility for an allocation
ied extensively in both economics and computer science. Relatedcan pe thought of as her level of satisfaction; if an agent wins all
work that does not require a prior distribution includes the follow-  he jtems, then she 800% satisfied. The reason that we require
ing. For two agents, McAfee [18] analyzes equilibrium behavior  his normalization is the following. When payments are available
under thressimple mechanismshose description does notrely on — ang ytility is quasilinear, this provides a way of comparing valua-
the prior distribution over the agents’ valuations. They are the first- (iong hetween agents. However, because payments are unavailable
price, the second-price, and the cake-cutting mecharisfer iy our context, it is no longer possible to make such a compari-
the case of three or more agents, the famil]/@fG redistribution 5o Hence, the units in which valuations are expressed become
mechanismare efficient, strategy-proof, and (ex post) individually  meaningless, so that the only meaning that can be derived from an
rational. VCG redistribution mechanisms are Groves mechanisms agent's valuations is theelative valuations of the items (the ra-
that allocate resources according to the VCG (Clarke) mechanism, i of the valuations). If we (say) doubled one agent's valuation
and then redistribute a large portion of the VCG payments back t0 for every item, in our payment-free context this would double that
the agents [2, 8, 21, 14, 13, 19]. The above papers aim to maxi- ygent's utility for every outcome, and as a result her behavior under
mize social welfare. Prior-free approaches have also been used f0 5y mechanism would remain completely unchanged. As a result,
revenue maximization, such as in digital goods auctions [1, 17, 12]. there can be no hope of coming anywhere close to maximizing the
There is also arich literature on mechanisms without payments. sqcia| welfare without some normalization assumption.
Asurvey is given in the book chapter by Schummer and Vohra [23]. A payment-free mechanisi : V x V — O maps the agents’
Barbera [3] gives an introduction to strategy-proof social choice yeported type vectors to an allocation. L€{(#,0) be agent’s
functions. Budish [6] gives a nice survey of existing allocation ility under allocationo when her true type is. Mechanism\/
mechanisms without payments that are designed for practical Usag8y «aid to bestrategy-prooff: Vi € {1,2},; o andwv=. we have
(e.g, the patented Adjusted Winner Procedure [5]). All these mech- 5 M5 0m)) > i(ﬁ..M(j j_))’ |:1’wzords ;;echanism
anisms are manipulable except for the Serial Dictatorship mecha-;g sUt:':'ate Ui’qr’(;éf if_ng r;};}ter :/]\;r;:\t_lthe other acent renorts. each
nism in Budish and Cantillon [7], in which the authors study user , t?y P . ot 9 ports,
behavior in Harvard Business School course allocation. Several pa_ag\(levnts fSt sr::;ltegt))/ IS to”repo_rt trut uh - A to be th h
without payments, combined with various other restrictiomg,( considerin ince)rlwtives) T>|{latf$ 50 M (07, 53) €
efficiency), must come down to mechanisms that are, in a sense, g1 . V1, U2, M (U1, V2) € arg MaXoeo
dictatorial [20, 11, 24]. The proposed linear increasing-price mech- Z1'6{1,2_} u' (v, 0)'_ o
anisms in our paper are also dictatorial in nature. Mechanism de- We will use the first-best mechaniski™ (which is not strategy-
sign without payments has also been studied in[18, 9]. proof) as our b_enchmark when_evaluatlng the performance of sgrateg
proof mechanisms. (When usidg ™ as a benchmark, we assume
that agents report truthfully, even though they are not incentivized
2. MODEL DESCRIPTION to do so. Hence)l ™ always produces the maximal social welfare
We study the problem of allocating (m > 1) heterogeneous  among all mechanisms, with or without priors, and with or without
items (referred to as itenisto m) between two agents (referredto  payments.)

as agentsd and2). We use—i to denote the agent other than Strategy-proof mechanis is said to be (at least)-competitive
Let O be the set of all possible allocations. An allocatioa O if the social welfare undel/ is always greater than or equal do
is denoted by a vectop1, p2,...,pm) (0 < p; < 1 for all j), times the social welfare undér *. Herec is calledM’s competi-
wherep; is the proportiof of item j won by agent (so thatl —p; tive ratio. The maximal possible value ofis calledM’s maximal
is the proportion of iteny won by ageng). competitive ratio
We assume that the agents’ valuations for the items are additive,
and that the agents are risk neutral. We use a véefou?, . .., v?,) Definition 1. Strategy-proof mechanis/ is a-competitive
to denote agerits type, where’ is agent’s valuation for winning against the first-best mechanism* if V1, v, we have

consensus agreement for all the agents. When allocating private D icr12) ut (0, M (vi,0%)) > O e} ut (U3, M* (07, 733))
goods (without externalities), consensus agreement never exists— ’ ’

every agent wants every good. Of course, in the worst case (all of  xample 1.The mechanism that always divides every item evenly
these papers are based on worst-case analysis), the agents in ﬂWas maximal competitive rati0.5. The mechanism that always

earlier papers are also in conflict. . item t italso h imal titi 5
3In fact, the cake-cutting mechanism is payment-free. However, it gives every item lo agenitalso has maximal competiive ratio.

is not strategy-proof in our sense. In the literature on cake-cutting o . . I
mechanisms [4], strategy-proofness has another, much weaker Our objective is to design strategy-proof mechanisms with high
meaning: An agent can nguaranteea better result by cheating, = competitive ratios.

given that she is ignorant about the other agent’s type.

“The recently proposed qualitative Vickrey auction[16], a gener- 3. UPPER BOUND ON THE COMPETITIVE

alization of the traditional Vickrey auction, is another mechanism

that does not rely on monetary payments. However, it can not be RATIOS OF STRATEGY-PROOF

applied to our problem as it requires that there will be only a single
winner, and that the center has preferences over the outcomes. MECHAN ISM_S -
®For indivisible itemsp; is interpreted as the probability that agent In this section, we derive an upper bound on the competitive ra-

1 wins itemj. tios of strategy-proof mechanisms. Given our objective, we only



need to consider strategy-proof mechanisms thasyremetric®

Definition 2. A mechanism)M is symmetric if it satisfies
Symmetry over the agent:we swap the reported type vectors

4. LINEAR INCREASING-PRICE
MECHANISMS

As mentioned earlier, it remains an open question to solve for

of two of the agents, then the items allocated to these agents arethe most competitive strategy-proof mechanism in general. There

also swapped.

Symmetry over the itemdf we swap agent’s valuations for
any two items, and we swap ageXs valuations for the same two
items, then the allocation result for these two items is also swapped.

CLaiM 1. For any strategy-proof mechanism that is
a-competitive, there is a correspondisgmmetricstrategy-proof
mechanism that is (at least}competitive.

We omit some of the proofs due to space constraint.

CLAIM 2. For the case of two agents, any symmetric strategy-
proof mechanism is (at leadt)5-competitive.

Claim 1 implies that for the purpose of deriving an upper bound
on the competitive ratios of strategy-proof mechanisms, we can
safely ignore strategy-proof mechanisms that are not symmetric.

Let us recall that a mechanisi is a-competitive if forall pos-
sibletype vectors, the social welfare undefis at leasty times the
social welfare under the first-best mechani&f. If we restrict the
type space, then the maximal competitive ratiddfcan only stay

are two reasons for this: first, we lack an elegant characterization
of all strategy-proof mechanisms for our problem; second, we lack
a general approach for evaluating a given mechanism (computing
its maximal competitive ratio).

In our attempts to design competitive mechanisms, we start with
the family of all strategy-proof mechanisms (SP). We then move on
to more and more restricted families of mechanisms: the family of
swap-dictatorial mechanisms (SD), the family of increasing-price
mechanisms (IP), and finally the family of linear increasing-price
mechanisms (LIP). Thedefamilies are nested as illustrated below:

LIPCIPC SDCSP

As we move from SP to LIP, we get more and more elegant
characterizations of the mechanisms. Finally, the mechanisms in
the LIP family can actually be characterized by a single parameter,
and we are able to evaluate (the competitiveness of) any given LIP
mechanism. That is, we are able to solve for competitive mecha-
nisms within the LIP family.

In a payment-free setting, if we fix agent’s report, then agent

the same or increase. That is, one way to compute an upper bound gssentially faces a set of allowable outcomes that she can choose
on the competitive ratios of strategy-proof mechanisms is to restrict ¢y, (each outcome corresponds to an allowable repof).ofs

the type space and then solve for the largest possible competitive
ratio for any strategy-proof mechanism.

THEOREM 1. The competitive ratio of any strategy-proof mech-
anism is at mos0.841. This is true for any number of items and
two agents.

PROOF We first focus on the case of two items. We consider the
following restricted type spac€(ih, (N —i)h)|[i = 0,1,..., N},
whereN = 50 andh = 1/N. Type vector(ih, (N — i)h) can
be denoted by the integér A mechanism for this restricted type
space can be denoted by tﬁ‘ﬁ fori = 1,2and0 < j,k < N,
wherepj.k, is the proportion of item won by agentl when agent
1's report isj and ageng®’s report isk.

Strategy-proofness for agemtcan then be represented by the
following set of linear inequalities? 0 < j,5',k < N

3ok + (N = )Pl > jpjrs + (N = j)pin
Strategy-proofness for agetcan be represented by a similar
set of linear inequalities involving the,.
The mechanism characterized by tbjg is a-competitive if the
following linear inequalities are satisfied:0 < j,k < N

3Pjk + (N = 5)p3k + k(1 — pji) + (N — k) (1 — ply,) >

a(max{j, k} + max{N — j,N — k})
The largest possible competitive ratio for any mechanism and for

necessary condition for a mechanism to be strategy-proof is that
the mechanism should always cho@'sdfavorite outcome (among
all allowable outcomes). This condition is not sufficient for the
mechanism to be strategy-proof flooth agents, because agent
may have the power to change the set of allowable outcomes that
agent; faces. That is;—¢ may want to submit a false report to get
agent; to a decision-i prefers. However, if we require that the set
of allowable outcomes agentaces is fixed, then the mechanism
that picksi’s favorite outcome is strategy-proof for both agents. Es-
sentially, in such a mechanism, ageétid the dictator: she chooses
her favorite outcome from a set of outcomes predetermined by the
mechanism, and agent: has no choice but to accept this outcome
(the decision is solely made kY. This leads to the following fam-
ily of swap-dictatorial mechanisms (by Claim 1, we only need to
consider symmetric mechanisms):

Swap-Dictatorial Mechanisms: With probability0.5, agent is
the dictator, who chooses her favorite allocation from a predefined
set of allowable allocation® C O. TheO' satisfy the following
(symmetry over the agents and the items):

° IfA(pl,pz7 .eyDm) € Oi,then(l—pl,l—pg,A..71—pm) S
O~ for anyi.
o If (p17p27"'7p"b) € Oil then(p(r(l):pa(2)7-"7p(7(m)) €

O’ for any permutationr ands.

the above restricted type space can thus be computed by solving a

linear program, which results in841.” Any strategy-proof mech-
anism for the case afiv > 2 items remains strategy-proof when

Swap-dictatorial mechanisms, as well as other dictatorial mech-
anisms, have been studied extensively because of their simplicity

applied to the case of two items (when the agents do not care abouf(®-9- [7]). Many papers in the literature on mechanisms without

the other items). Hence, the upper boungi1 still applies. [

®This is a frequently used technique in the literature on prior-free
mechanism design.

"We acknowledge that a computer-assisted proof is not as satis-
factory as an easily human-verifiable mathematical proof. Because
this is a linear programming problem, in principle, we can give a
(nearly) optimal solution to the dual problem to show that it is im-
possible to better; we do not give such a solution here because it
does not seem to shed much light.

payments suggest that strategy-proofness, combined with various
other properties, can only come down to mechanisms that are dic-
tatorial in nature [20, 11, 24]. However, since we do not assume
additional properties, for our problem, there do exist strategy-proof
mechanisms that are not dictatorial in nature (tha$®, C SP).

For purpose of maximizing social welfare, ideally, we want the
dictator agent to take only items that she really values, and leave
the remaining items to the other agent. This leads to the following
family of increasing-price (IP) mechanisms



Increasing-Price (IP) Mechanisms:With probability0.5, agent fol ﬁdt = 1. We denote the proportion of itefnwon by agent
i is the dictator, and is endowed withunit of artificial currency.
The dictator agent can purchase (proportions of) items (from the
mechanism, not from the other agent) with her artificial currency. ) ) N ) J ]
The (proportions of) items not purchased at the end go to the otherProportion of item; won by agent underf wheni is the dictator is
agent. Rather than having just a fixed price for each item, there % (underf, a dictator gets times as much item per unit of artifi-
is a price schedule for each item, and the item becomes more eX-cliaI currency at every amoﬁnt of currency spent), and the ptiopor
pensive as the dictator agent buys more of it. The price schedulesyf item j won by agent underf wheni is not the dictator id —

are characterized by functiorf'; :[0,1] — Rt fori = 1,2 and q" . qivi+(1—g; vl
j=1,2,...,m. fi(z)is the instantaneous price per unit charged ~» The social welfare undef equals)_; ; N The

to agent (wheni is the dictator) if she demands itemat the point  gocial welfare undef equalsy™, - w which is
wherez units of her artificial currency have already been spent on 4 |east1 (as in the proof of Claim 2). It turns out that the social

item j. By Claim 1, we can simply assunfg = f for all i and;. welfare underf is always less than or equal to the social welfare
Functionf is increasing and positive. We also assufigdifferen- R givi+(1—g5 v
tiable. If, at the end, agentwhen she is the dictator) spentnits underf, as proved below), ; =————~— =
of artificial currency on iteny, then she is allocated a proportion >y ajvit(p—a; Hvi+(1-p)v; > ajvit+(p—q; )vs n
Iy ﬁdt of item j. We will present an example IP mechanism “J (L—pyot 2 i (o ﬁ)z;ﬂ 2
later in this section (which actually belongs to the more restricted Y, ; —5-2 =Y, . LT N (1—-p) =
class of LIP mechanisms). aivl/p+(1—a; " /p)v} divl/p+(1—q; /)]

The intuition for why increasing-price mechanisms might per- P 5 +(1’_p) = Zu .2 : :
form well is as follows. If the dictator agent demands a large pro-  Hence, we only need to considgsatisfying [j 77 = 1. 0
portion of an item, then she will be paying at a high rate, which . . . . . . . .
can only happen when she highly values the item. Because prices Elnally, the family of linear increasing-price mechanisms is de-
are increasing, the optimal strategy for the dictator agent is sim- Sctaii?ﬁwlg\rgésin Price (LIP) Mechanisms: Linear increasing-
ply the greedy strategy: purchase (an infinitesimally small amount _ . asing-rric . ) L 9
each time) the best deal (the item with the highest value/price ra- price _mechamsn_ws are increasing-price mechanisms chara_lcterlzed
tio) until the artificial currency runs out. That is, at some point, if Egnitlg:ﬁsr (f(urr]rggotgf E)? zsﬁf/ e+f§y'f Vtv()hf)ree(ilngpedabsi?]rebpr?zlsmtlg
the dictator agent’s valuation for iteghis v;, and so farz; units e . pe : o 9. :
of artificial currency have been spent on itgiithen the dictator be positive to avoid negatlv? prices or division-by-zero.) Since we

H i : 1 _ _ a
agent should purchase an infinitesimally small amount of jfsm ~ Only considerf satisfying [, ;dt = 1, we haveb = .
wherej* — arg man{%}. At the end, for items that have  Thatis, a LIP mechanism is characterized by a single parameter
J From now on, we us&I P(a) to denote the LIP mechanism with

parameten. We useb to denote the valug;*— .

underf wheni is the dictator by;:. The proportion of iteny won
by agenti under f wheni is not the dictator is theth — q;i. The

been partly purchased, the final prices must be proportional to the
dictator agent’s valuations:

LEMMA 1. Under an IP mechanisms, if the dictator spends ~ EXample2.leta = 2 (b = Z%3) andm = 2. Letthe
k1, k2(0 < k; < 1) units of artificial currency on items, 2, then agents’ type vectors bgl,0) and (0.5,0.5), respectively. Un-
the dictator’s valuations for these items must hék:) - C' and der L1P(a), with 0.5 probability, agentl is the dictator. Since
f2(k2) - C for someC. agentl’s type vector ig(1, 0), she will spend all her artificial cur-

rency on iteml. The resulting allocation i$1,0): agentl wins

Any increasing and positive functighcorresponds to an increasing-the entirety of item1, while agent2 gets what is left (the en-
price mechanism. Actually, for the purpose of designing competi- tirety of item 2). With 0.5 probability, agent2 is the dictator.
tive mechanisms, we only need to consider functifitisat satisfy Since agent's type vector is(0.5,0.5), she will divide her arti-
fol ﬁdt = 1. That is, we only need to consider increasing-price ficial currency evenly on items and?2. The resulting allocation
mechanisms in which the dictator agent gets the entirety of anitemis (1 — [*° —L_dt, 1 — [0 —L_qt) = (0.283,0.283): agent2

if and only if sh ds all her artificial his i S 0 atth
ITand only if she spends a er artificial currency on this item. wins 00-5 atibdt = 0.717 proportion of both item. and2, while

CLAIM 3. For the purpose of designing competitive IP mecha- agentl gets what is left { — [;° i dt = 0.283 proportion
nisms, we only need to consider increasing-price mechanisms withof both items). In total, the resulting allocation undefP(a) is

] 1 1 1 _ 0.5 0.5
[ satisfying [ s7ydt = 1. (1=35J" 5dt, 3 — 5 [, s dt) = (0.642,0.642).
PROOE If f01 %dt > 1, then there exist§/ (U < 1) that Besides simplicity, the linear increasing-price mechanisms pos-
ce U 1 g, 2 sess a hice property that is not shared by other (non-linear) incgeasin
Sat'Sf'eSfo Wdt _Al' VO <e<U, Ietf. be the same a$ price mechanisms. Before defining this property, we need the fol-
for z < U, and letf(z) take some very high values fdf < lowing definitions. Suppose we are considering an IP mechanism
z < 1 (in a way that makeg increasing), so thaf,, %dt < characterized by functiofi.

1+e. Since the dictator agent will never spend more thamits of Definition 3. A type vectord € V is strictly full rankedfor f if
artificial currency on any item (it is pointless for the dictator agent 4 ictator agent with true typéwill purchase positive proportions
to continue purchasing an item when she has already obtained theys every item under.
entirety of this item), on the region that matters to the mechanism )
(0 < z < U), f andf are identical. Thus, we only need to consider ~ EVery strictly full ranked type vectar = (7}1’17 V2,...,Um) COI-
functionsy satisfying f} +%;dt < 1+ c for arbitrary small value ~ 8SPONdS 10 8 VeCtaty, fa, .. ., tn) With Doy £ = 1, wheret;

. i bol (> 0) denotes the amount of artificial currency that an agent with
e. Thatis, we only need to consider cases whrey;; < 1. type vectors will spend on itemj (when she is the dictator). The

If fOl ﬁdt = p < 1, then letf = pf, so that we have final value/price rati% should be the same for gl(Lemma 1).



Definition 4. A type vectors € Visfull rankedif o € W, where
W is the closure of the set of all strictly full ranked type vectors.

they will spend the same amount of artificial currency on item
So, they win the same proportion of itemat the end. Now if
we increase the value of agenfor item 1 by a tiny amount (still
|-:O|' van” ranked vectot, we also have that the final value/price keeping it less than the value of agé)f then we have a situation
ratio ;5 should be the same for 3l where agent values iteml less, but wins a greater proportion of
Not all type vectors are full ranked type vectors. If an agent it at the end (agent now spends more on ite). That is, to
has very low valuations for some items, then she will not spend satisfy the strong responsiveness condition, whenever ¢, +
any artificial currency on those items ff(0) is sufficiently high. ty = t, +t, = t < 1for nonnegative,, ty, t,, t;,, we must have
For smallf(0), most type vectors are full ranked. Inthe restof this  f(¢.) + f(ts) = f(t,) + f(,). Thatis,V0 < ¢ < ¢ < 1, we have
paper (when solving for the competitive ratios of LIP mechanisms), f(¢)+ f(0) = f(t—c)+ f(c). Since we assumgis differentiable,
we focus on full ranked type vectors, and treat vectors that are not by taking the derivative overon both sides of the equality, we have
full ranked as exceptions. that f'(t) = f'(t — ¢). The values of andc can be arbitrary. That

] ) is, f' is a constantf must be linear. [
CLAIM 4. For cases of at least three items, LIP mechanisms

are the only IP mechanisms satisfying the following condition:
Strong responsivenessor two agents with full ranked type vec-

tors, if one agent values an item more than the other agent, then she

should win a greater proportion of this item than the other agent.

The above claim provides another justification (other than sim-
plicity) why, among all IP mechanisms, we focus on LIP mecha-
nisms. In the next section, we solve for competitive mechanisms
within the LIP family.

We first prove the following lemma, which will be also used later
in the paper.

5. COMPETITIVE LINEAR INCREASING-
PRICE MECHANISMS

Since a linear increasing-price mechanism is characterized by a
single parameter, if, for a given value @f we are able to evaluate
the competitiveness dt/ P(a), then the task of solving for com-
petitive LIP mechanisms can be done simply by searching for the
‘ optimal value ofa.

PROOF. The final value/price rati% should be the same for In what follows, we discuss how to evaluate the competitiveness

atj+b of LIP(a), for a given value ot and a given number of items.
a+mb

LEMMA 2. Let@ = (v1,v2,...,vm) be a full ranked vector
underLIP(a). Leti’s paymentvectoft:, ta, ..., tm) O 72, t; =
1) be such that an agent with true typevill spend¢; units of arti-
ficial currency on iteny under LI P(a) (when she is the dictator).

a,tj+b

Then, thev; and thet; satisfyv; = =2 for all j.

for all

all j, by Lemma 1. Sinc&_ v; = 1, we havev; =
.o O
J 5.1 Two ltems

We first focus on the case of two items.

We denote the type vectors of agdnand2 by (x,1 — z) and
(y,1 —y), respectively { > = > y > 0). We abuse notation by
usingz to refer to both the value and the type vector whose first
element isc. We do the same fay.

Now we are ready to prove the above claim.

PROOF OFCLAIM 4. We first prove that LIP mechanisms sat-
isfy the strong responsiveness condition.

Lemma 2 says that under a LIP mechanism, an agent’s value
for an item is linear in the amount of artificial currency this agent
would spend on the item as a dictator. Therefore, if one agent val- ) - .
ues an item more than the other agent, then, as the dictator, she CLAM 5. Under LIP(a), with probability 0.5, agentl is the
would spend more on this item than the other agent, which meansdictator, whose optimal strategy (when she is the dictator) is as
she wins more of the item at the end. ollows.

We now prove that LIP mechanisms are the only IP mechanisms
satisfying the strong responsiveness condition, for cases of at least  ® If ;%5 > 3%, then agent will spend all her artificial cur-
three items. rency on iterml. At the end, agent gets iteml in its entirety

Let us consider an IP mechanism characterized by an increasing while agent gets whatl does not take (iter2in its entirety).
positive functionf. If 3 nonnegative,, t, t5, t;, so thatd < ¢, + It should be noted that this is the resulting allocatiwhen
ty = th +t, =t < 1landf(ta) + f(ts) > f(th) + f(t}) are agentl is the dictator When agen? is the dictator, we may
both satisfied, then we can construct the following full ranked type get a different allocation.

vectors:
(=57 )fJS”?tt))vL( T TG )j’r(;&) TR ] o If ;”g > %, then agentl will spend all her artificial cur-
& L Ty T rency on iten®. At the end, agent gets iten® in its entirety

£(ty)
f(l*t)+f(ta)+f(<)tb)+(””*3)f(0) P FA=t)+F(ta)Hf(tp)H(m=3)F(0)7 "> while agent2 gets iteml in its entirety.

) and

FA—+F(a)+5(tp)+(m—3)F(0) ) _ _ )

( F(1—1) f(t) e Otherwise, agent will spendt = units of arti-
T+ F (L) +F )+ (m—3)F(0)° FOA—t)FFE)+FE)+(m—38)F(0)* . . S _ .
FA=)+f L)+ f () +( )F(0) 7 FA=t)+F L)+ (t,)+( ) £(0) ficial currency on itemi, and1 — ¢ — (1=2)(a+2b)=b | | iie

£(t) £(0) . ; a .
of artificial currency on iten2. At the end, the instanta-

z(a+2b)—b

FA=)+F (L) +F(t)+(m—3)F(0)7 fFA—-t)+f(tL)+f(t)+(m—3)f(0)> """’

0
f(lft)+f<t{1)f;(zg)ﬂm%)f(o))'

The two vectors are constructed in such a way that apevit
spendl — ¢ units of artificial currency on iten, ¢, units on item
2, tp units on item3, and0 units on the other items, while ageht
will spend1 — ¢ units of artificial currency on iten, ¢, units on
item 2, ¢, units on item3, and0 units on the other items. Agent
1 values iteml less than agerit (the denominator is larger), but

neous prices of items and 2 will be at + b = z(a + 2b)

anda(l —t) + b = (1 — z)(a + 2b), respectively. (We
note that the prices are proportional to agehs type vec-
tor (z,1 — x), as they should be.) At the end, agémgets

a proportion (¢4 1n(®) f jtem 1 and a proportion
M — @ of item 2, while agent2 gets the re-
mainder.



Forj = 1,2, we usep;(x, y) to denote the proportion of itegh
won by agent at the end, when ageis reported type vector is
and agen®’s reported type vector ig. (This proportion takes the
randomization over who is the dictator into account.) The value of
p;(z,y) can be computed as shown abope(z, y) is increasing in
z and decreasing ig. p2(z, y) is decreasing ir and increasing in
y. We useS(z, y) to denote the social welfare undef P(a). That
is, S(z,y) = zp1(z,y)+ (1 —x)p2(z, y) +y(1—pi(z,y))+ (1 -
y)(1—p2(z,y)). The social welfare under the first-best mechanism
M* equalst + 1 — y.

By definition, the maximal competitive ratio dff P(a) can be
computed as

S
m (z,9)
1>z>y>0x+ 1 —y

We now show how to bound the above expression from both be-

low and above.

Let N be a large positive integer. L&t = % be the step size.

Let thex; be defined as; = ihfori =0,1,..., N. Similarly, let
they; be defined ag; = ihfori =0,1,..., N.
We have that
S(m,y) > min min S(z,y) }

N>z>]>0{x +h>z > sz“’h—"l—’yj
yith>y2>y;

m
1>z>y>0x + 1 —

zip1(xi, y; +h) + (1 — x5 — h)pa(z; + h,yy)
45 (1 = p1(xi + b, y;))
+(1—y; —h) (1 = pa(zi,y; + 1))
xi+h+1— Y

> min
N>i>;>0

We also have that

S(z,y)

m < S(xi,y;)
1>e>y>0 2+ 1 —y

T NZizj>0x; + 1 —y;

zip1 (@i, y;) + (1 — zi)p2(@i, y5)
+y; (1 — p1(@i, y5))
+(1 —y;)(1 = p2(zi,9;))
zi+1—y;
We note that the; and they; are constants. The values of the
pr(zi,y;) are also constants (for fixeg. That is, based on the

= min
N>i>j>0

above two inequalities, we are able to compute a constant upper
bound and a constant lower bound on the maximal competitive ratio

of LIP(a). Whena = 2, the lower bound i€).828. Since any
lower bound on the maximal competitive ratio is also a competitive
ratio, LI P(2) is (at least)).828-competitive. That is, the obtained
LIP(2) mechanism is near optimal for the case of two items (we

CLAIM 6. Leta be the maximal competitive ratio &/ P(a).
Let o™ be the maximal competitive ratio &ff P(a) if we restrict
the type space to the set of full ranked type vect@raNe have

a+b o
a+2mb

w

Before proving this claim, let us introduce the following defini-
tion and lemma.

Definition 5. Let ¥ = (v1,va, . .., vm), Which may or may not
be full ranked. Letv 's payment vecto(t,t2,...,tx) be such
that an agent with true typ@ will spendt; units of artificial cur-
rency on itemj (when she is the dictator). We defindv) =

titb . . .
(v1,v5,...,v,,), Wherev; = Zi:w for all 5. That is, ¢(?¥) is

the (unique) full ranked type vector corresponding to the payment
vector of?.

If ¥'is already full ranked, thea () = . In any case, an agent
with true typeg(¥) will act in the same way as an agent with true
typed, since their corresponding payment vectors are the same.

LEMMA 3. V7 = (1)1,1)2,...,11m) Vj Ietcb( ) (G A
Then, we have; + af > v} andv; 2 + b < v} Thatis, if we
changeq; into ¢(v), the value of an element increases at most by
and the value of an element decreases at most by a factor of

a+nb’
a+b
a+mb*
PROOF Let (t1,t2,...,tm) be the payment vector af and
¢(v). LetS = {j|t; > 0,5 = 1,2,...,m} andT = {g|tj =

0,7 = 1,2,...,m}. We have that foralf € S, atﬁb =
for a common constar®. We also have that for all € T, C' >
atUJqu = Ubj'
We get) , gv; = C(a + [S]b). We also gety>, . v; <
C(|T[b). Sincey_; g, v; = 1, we haveC(a + mb) > 1. That
is, forj € S,v; > 2 = vl Forj € T,v) = ;o
Therefore, for any, v; + -2 > v}.

Since) 5 v; = landy; > Oforall j, we havez cs Vi <

1. Thatis,C'(a+b) < C(a+]|S[b) < 1. Thatis,C < —. Hence,
at; +b at; +b

foranyj, v; < . Let us recall that; = a+mb. Therefore,

for anyj, v; 25, g vj. O

Now we are ready to prove Claim 6.

PROOF OFCLAIM 6. Letvi, vz € V be any two type vectors.
Let S be the obtained social welfare (undef P(a)) when the
agents report; andwvz, respectively. LetV be the first-best so-

recall that Theorem 1 says that any strategy-proof mechanism is atcial welfare when the agents repoitandvs, respectively. Lefs?

most0.841-competitive).

THEOREM 2. For the case of two items and two agents, the
competitive ratio ofL 7 P(2) is at least0.828, and at mos0.829.

5.2 Three or More Items

With more than two items, we need a different technique to
bound the maximal competitive ratio of a given LIP mechanism.
Let o be the maximal competitive ratio dfIP(a) (for some
givena andm). LetW be the set of full ranked type vectors under
LIP(a). Leta™ be the maximal competitive ratio dfIP(a) if
we restrict the type space ¥&. The following claim says that a
lower bound or can be obtained based aff .

be the obtained social welfare (undefP(a)) when the agents re-
port ¢(v1) andg(v3), respectively. Lef/® be the first-best social
welfare when the agents repartvi) andeo(vz), respectively.

We consider what happens when agents rep@it) and¢(vs3)
instead ofv; andvz. The allocation does not change. Since there
arem items and by Lemma 3 the valuation of an item goes up by
at most—2— + 5 we haveS? < mufmb + 5. Since by Lemma 3the

valuation of an item goes down by at most a factor b, we

a+m

> 8%

haveM? > b, Therefor% e

a+mb

(as in the proof of Claim 2), we havseﬂ";b;’"”

SinceS > 1

S¢
> e That is,

S - _atb s¢ a+b

W
M = a+2mb MP? = a+2mba .



Claim 6 implies that if we can get a lower bound @fi, then by
multiplying it by ai;’;b’ we get a lower bound oa. So, we now
focus on deriving a lower bound on the maximal competitive ratio
of LIP(a) considering only full ranked type vectors.

Let 2,y be the agents’ valuations for item(or any other item).
Without loss of generality, we assume> y. Since we are only
dealing with full ranked type vectors, we have= % for some
0 < t» < 1, wheret, is the amount of artificial currency agent
1 spends on item when she is the dictator. Similar observations
hold fory. That is,y = Zi’;;’ for some0 < ¢, < 1, wheret,
is the amount of artificial currency agehspends on item when
she is the dictator. Let = £. We havea%b <u<l.

Under L1 P(a), the proportion of itemi won by agent when1

is the dictator is™(@=tt) _ 1n(b) "The proportion of item won
In(aty+b) + In(b) In
Diatyth) | @)

by agentl when1 is not the dictator id —

atg+b
n(grts)

total, the proportion of item won by agentl is % + o

1 + ln( ) l;a(u> n
by agent‘z is s n) + 1

We useR(z, y) to denote the sum of the agents’ utilities derived
from item 1 when the agents’ valuations for iteinarex andy,
respectively £ > y). Let6(a) be defined as the minimum ratio
betweenR(z,y) andx over all z,y. That is,f(a) is the mini-
mum ratio of achieved utility over optimal utility for iterh under
LIP(a), when we only consider full ranked vector§(a) only
depends o (not onm). We call it theintrinsic valueof a.

%. Similarly, the proportion of item won

CLAIM 7. The intrinsic valuéd(a) is less than or equal to the
maximal competitive ratio ok P(a) considering only full ranked
type vectors.

PROOF By symmetry over the items, the achieved utility over
optimal utility for any item is at leasi(a). Hence, the maximal
competitive ratio is at leagi(a). I

Let NV be a large positive integer. Lét= 55

size. Let theu; be defined as; = 25 +ihfori =0,1,...,
We observe that

be the step
N.

— In(u) 1 In(u) 1
T +35)+ + 3
0(a) = min (T2 2) (5 2)
e SvSe< r
. —In(u) 1 wln(u)  w
=, min ——=— + -+t —+ =
+b <u<l1 2a 2 2a 2
—1)1 1
> min  mp @D 1w
0<i<N u;<u<u;+h 2a 2 2
> min (wi +h —1)In(u; + h) _’_1_’_%
0<i<N 2a 2 2

Givena, thew; are constants. The above expression is the min-
imum of N constants. It gives a lower bound 6(u). We denote
it by 6(a). The following expression gives an upper bound)¢dm)
(denoted by (a)).
—In(u) " 1 wuln(uw)
2a

LU
2

1
2a 2

— Lower bound (achieved ratios)|
 Upper bound (intrinsic values)

Competitive Ratios

0.6 . . . . . . . . .
100 20 30 40 5 60 70 80 90

Number of Items (3 to 100)

100

Figure 1: Obtained Competitive Ratios

That is, the obtained lower bourtda) and upper bound(a)

differ only by at most, which can be made arbitrarily small.
Sincef(a) < o, we have thatr is bounded below by-432-0(a).?
Next, we prove thaf(a) serves as an upper bound @i

CLAIM 8. 0(a) > «

PROOF Leta be the maximal competitive ratio @/ P(a) when
there are only two items. We hade> a. Hence we only need to
showé(a) > a&.

For the case of two items, let us consider the case where dgent
type vector ig 4+, u+1 ), and agen?’s type vector ig —— T )
Here, a%b < u < 1. Itis easy to see that these two type vec-
tors are full ranked. The utility of agertunder LI P(a) equals

(34 ) 4 L(d 4+ =)y The utility of agent2 is
the same. The first-best social welfareui%. So, & is at most
3 + “ 1“(“) + w — lﬂju) +1 ln(u) ln(u)
2% u+1 +1 ) - “? T * .
Sinceu can take anyvaluefro% tol,a<min b ,qy i+
atb="=
5+ M 1“2(;‘) The expression on the right side of the inequal-

|ty is exactlye( ). O

Theorem 3 summarizes the development in this section.

THEOREM 3. For the case ofn items and two agent$,7 P(a)

is at Ieastaj;’;bG(a)-competitive, and at mos{(a)-competitive.

We illustrate the results in this section with Figure 1. For three
to one hundred items, we searched for the LIP mechanism (from

{LIP(a)la =0.01,0.02,0.03,...,20}) that maximizes -0 (a)

(the corresponding upper bourﬁ{sz) are also presented).

8When we compute this lower bound, we actually compute
ai;ﬁzbg(a)'

“When we compute this upper bound, we actually comp(as.




6. LARGE NUMBERS OF ITEMS

We now show a negative result: as the number of items goes
to infinity, any increasing-price mechanism (whether it is linear or

nonlinear) has maximal competitive rafids. That is, in the limit,

they are no more competitive than the mechanism that simply di-

vides the items evenly.

THEOREM 4. Forthe case of two agents, as the number of items

Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMASges 882889,
Hakodate, Japan, 2006.

[9] V. Conitzer and T. Sandholm. An algorithm for automatically
designing deterministic mechanisms without payments. In
Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMASges 128-135,
New York, NY, USA, 2004.

m goes to infinity, the maximal competitive ratio of any increasing- [10] O. Dekel, F. Fischer, and A. D. Procaccia. Incentive

price mechanism i8.5.

PROOF Let M be any increasing-price mechanism, character-
ized by the price functiorf. Let the type vectors of the agents be

( (1) £(0)

£(0)
FOFm-DFO) FOFm-DFO) - FOFm-D7w)) and

(1,0,...,0), respectively. Either agent, when she is the dictator,

will choose to spend all her artificial currency on itdm
When agent is the dictator, the social welfare undef equals
s y7;- When agene is the dictator, the social welfare

underM equalsl + +5%= 0. The social welfare under the

first-best mechanism equadlst % The competitive

ratio of M is then at most L = JWHm=DJ©O)
=) P
L+ St o) F()+2( 1) £(0)

As m — oo, this ratio goes t®.5. That is, the maximal com-
petitive ratio of any increasing-price mechanism is at nfostas
m — oo. On the other hand).5 is a lower bound on the competi-
tive ratios of strategy-proof mechanisms by Claim Z]

7. FUTURE RESEARCH

One direction for future research is to find out whether higher
competitive ratios can be achieved by focusing on other families of
strategy-proof mechanisms. We could also consider more general
settings in which the agents may express complementary/substitutable

preferences over the items.
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