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Understanding temporal models

Temporal: of or relating to time.

Temporal models are often seen as
(deterministic) dynamical systems (a fixed rule) e.g.
Kalman filter
or random processes (random walk) e.g. HMM,CRFs

3 / 18



Understanding temporal models

A dynamical system uses a fixed rule to describe the time
dependence of a point in a geometrical space.

Origin: Netwonian mechanics.
Often uses differential equation e.g. a flow
d
dt x(t) = A ·x(t),
or recurrence relation e.g. Fibonacci numbers
Fn = Fn−1 + Fn−2 with seed values: F0 = 0,F1 = 1.
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Understanding temporal models

Kalman filter assumes the true state at time t is evolved
from the state at (t − 1) according to

xt = Ft xt−1 + Bt ut + wt ,

where Ft is the state transition model, Bt is the
control-input model applied to the control vector ut , wt is
the noise from N(0,Qt).

Hence it is seen as a dynamical system. Details of
Kalman filter and particle filter will be deferred to later part
of the talk.
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Understanding temporal models

A random process is a collection {X t : t ∈ T}, where each
X t is a random variable.
If Pr(X t+1|X 0:t) = Pr(X t+1|X t), it’s markovian.
If Pr(X t+1|X t) = Pr(X t ′+1|X t ′) for all t , t ′, it’s homogenous.
A markov chain is a discrete-time random process with
markovian and homogenous assumptions.

A chain of length N + 1

X0 X1 X2 X t Xt+1 XN

Essentially modeling (due to homogenous assumption)

Xt Xt+1
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Understanding temporal models

Transition graph (assuming X ∈ {s1, s2}) of the previous
markov chain is:

s1 s 2

0.6 0.4

0.3

0.7

Transition graph 6= graphical model
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Understanding temporal models
HMM (with hidden state X t and observation Ot ):

A HMM chain of length N + 1

O

X0

0 O

X1

1 O

X2

2 O

X t

t O

Xt+1

t+1 O

XN

N

Essentially modeling (due to homogenous assumption)

O

Xt

t O

Xt+1

t+1

This is called 2-time-slice Bayesian network (2-TBN).
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Dynamic Bayesian Network

A Dynamic Bayesian Network (DBN) is a pair (B0,B→),
where B0 is a Bayesian network over Z0 representing the
initial distribution over states, and B→ is a 2-TBN for the
process representing the transition between states over
Zt :t+1. For any t ≥ 0, the distribution over Z0:t is a unrolled
Bayesian network. See an example.
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Dynamic Bayesian Network
A moving car tries to track its current location using the
data obained from a possibly faulty sensor with states set
{Weather, Velocity, Location, Failure, Observation}
Zt = (W t ,V t ,Lt ,F t ,Ot)

An unrolled DBN (over Z0:t ) 2-TBN (B→)

O

F0

0 O

F1

1 O

F2

2 O

F t

t

L 0 L 1 L 2 L t

V0 V1 V2 V t

W0 W1 W2 Wt

O

F t

t O

Ft+1

t+1

L t Lt+1

V t Vt+1

Wt Wt+1
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Dynamic Bayesian Network

Given training data, the parameters of the DBN can be
learnt via techniques in tutorial (3). Once parameters are
learnt, the prediction can be done via techniques in
tutorial (2).
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Dynamic Bayesian Network
Kalman filter as a HMM.

O

Xt

t O

Xt+1

t+1

Markov assumption: p(xt+1 | x0, · · · , xt ) = p(xt+1 | xt ) and p(ot+1 | x0, · · · , xt+1) = p(ot+1 | xt+1)

MAP: p(xt+1 | o0:t+1) =
p(ot+1 | xt+1)p(xt+1 | o0:t )

p(ot+1 | o0:t )
,

where p(xt+1 | o0:t ) =

∫
p(xt+1

, xt | o0:t )d xt =

∫
p(xt+1 | xt )p(xt | o0:t )d xt

,

and p(ot+1 | o0:t ) =

∫
p(ot+1 | xt+1)p(xt+1 | o0:t )d xt+1 constant w.r.t. x

The remaining terms are ready to compute:

p(ot+1 | xt+1) = N(Ht+1 xt+1
, Rt+1)

p(xt+1 | xt ) = N(Ft+1 xt
, Qt+1)

p(xt | o0:t ) = N(X̂ t
, Pt )
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Dynamic Bayesian Network
Particle filter as a HMM.

O

Xt

t O

Xt+1

t+1

Markov assumption: p(xt+1 | x0, · · · , xt ) = p(xt+1 | xt ) and p(ot+1 | x0, · · · , xt+1) = p(ot+1 | xt+1)

MAP: p(xt+1 | o0:t+1) =
p(ot+1 | xt+1)p(xt+1 | o0:t )

p(ot+1 | o0:t )
,

where p(xt+1 | o0:t ) =

∫
p(xt+1

, xt | o0:t )d xt =

∫
p(xt+1 | xt )p(xt | o0:t )d xt = Ext∼p(xt | o0:t )[p(x

t+1 | xt )],

and p(ot+1 | o0:t ) =

∫
p(ot+1 | xt+1)p(xt+1 | o0:t )d xt

When p(xt | o0:t ) is not gaussian, one can use monte carlo (N samples {xt
i }

N
i=1) to approximate the expectation

Ext∼p(xt | o0:t )[f (x
t )] ≈

1

N
[

N∑
i=1

f (xt
i )],

where f (xt ) = p(xt+1 | xt ).
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Dynamic Bayesian Network
Particle filter uses Sequential Importance Resampling (SIR)
Step 1: sampling and computing weights.

Sample xt
i ∼ q(xt |x0:t−1,o0:t ) ≈ p(xt |xt−1),

w t
i = w t−1

i ·
p(ot |xt

i )p(xt
i |x

t−1
i )

q(xt |x0:t−1,o0:t )
.

Step 2: resampling. If not enough particles {xt
i }i , resample

{yt
i }i from the current particle set {xt

i }i with probability
proportional to {wi}i . Replace the current particle set with the
new one {yt

i }i .

p(xt+1 |o0:t ) = Ext∼p(xt |o0:t )[p(xt+1 |xt )],

≈ 1∑N
i=1 w t

i

[
N∑

i=1

w t
i p(xt+1 |xt

i )] ≈ 1
N

[
N∑

i=1

p(xt+1 |yt
i )]

The way that w t
i is generated may look strange at first sight.

Let’s crack it!
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Dynamic Bayesian Network
In importance sampling, one wants to sample (but hard
to) x ∼ p(x), and it’s easy to sample x ∼ q(x).

Ep[f (x)] = Eq[
p(x)

q(x)
· f (x)] ≈

∑N
i=1 wi · f (xi)∑N

i=1 wi

The weight

wi =
p(xi)

q(xi)
.

In particle filter, at time t and t − 1,

w t =
p(x0:t |o0:t)

q(x0:t |o0:t)
,

w t−1 =
p(x0:t−1 |o0:t−1)

q(x0:t−1 |o0:t−1)
.

15 / 18



Dynamic Bayesian Network

w t

w t−1 =
p(x0:t |o0:t)

q(x0:t |o0:t)

q(x0:t−1 |o0:t−1)

p(x0:t−1 |o0:t−1)

=
p(xt ,ot ,x0:t−1,o0:t−1)

p(x0:k−1,o0:t−1)
· p(o0:t−1)

p(o0:t)
· 1

q(xt |x0:t−1,o0:t)

= p(xt ,ot |x0:t−1,o0:t−1) · p(o0:t−1)

p(o0:t)
· 1

q(xt |x0:t−1,o0:t)

= p(xt ,ot |x0:t−1,o0:t−1) · const · 1
q(xt |x0:t−1,o0:t)

= p(xt ,ot |xt−1,ot−1) · const · 1
q(xt |x0:t−1,o0:t)

= p(xt ,ot |xt−1) · const · 1
q(xt |x0:t−1,o0:t)

∴ w t = w t−1 · p(ot |xt)p(xt |xt−1)

q(xt |x0:t−1,o0:t)
· const .
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Dynamic Markov Random Fields
CRFs:

O

Xt

t O

Xt+1

t+1 O

X0

0 O

X1

1 O

X2

2 O

X t

t O

Xt+1

t+1 O

XN

N

P(y |x; w) =
exp(〈w,Φ(x,y)〉)

Z (w |x)
, (1)

where

Z (w |x) =
∑
y′∈Y

exp(〈w,Φ(x,y′)〉), (2)

and

Φ(x,y) =
∑
i∈V

Φ1(x,y(i)) +
∑
(ij)∈E

Φ2(x,y(ij)). (3)

17 / 18



Dynamic Markov Random Fields
Semi-Markov Model: Using (??) with

Φ(x,y) =

( l−1∑
i=0

Φ1(x,ni , ci),
l−1∑
i=0

Φ2(x,ni ,ni+1, ci),

l−1∑
i=0

Φ3(x,ni ,ni+1, ci , ci+1)

)
.
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