
Probabilistic Graphical Models (4):
sampling-based approximate inference

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies,
The University of Adelaide, Australia

10 June 2011

1 / 41

Course Outline

Probabilistic Graphical Models:
1 Representation
2 Inference
3 Learning
4 Sampling-based approximate inference (Today)
5 Temporal models
6 · · ·

2 / 41

Sampling Outline

Understanding samples
Sampling techniques overview
Sampling techniques in PGM inference

3 / 41

Understanding samples
In fact, there is no way to check ’a sample’ is from a
distribution or not — two totally different distributions can
generate the same sample. For example, uniform[0,1]
and gaussian N(0,1) can both generate a sample with
value 0. Looking at a sample with value = 0 alone, how do
you know its distribution for sure? What we really check
(and know for sure) is the way that the samples were
generated. When we say a procedure generates a
sample from a distribution P, what we really mean is that
keeping sampling this way (by the procedure), the
normalised histogram Hn with n samples is going to
converge to the distribution P. That is Hn → P as n→∞.
If we don’t know the way that the samples were
generated, we never know what’s the distribution for sure
— we can only guess (e.g. using statistical tests) based
on a number of available samples.

4 / 41

Sampling techniques overview

Monte Carlo
Importance sampling
Acceptance-rejection sampling
Markov chain Monte Carlo (MCMC)

5 / 41

Monte Carlo

Monte Carlo methods are a class of computational
algorithms that rely on repeated random sampling to
compute their results.

repeat
draw sample(s)
compute result according to the samples

until sampled enough (or the result is stable)

6 / 41

Monte Carlo

To estimate π (area of a circle with radius r is Sc = πr 2).
Idea:

draw a circle (r = 1) and a rectangle (2r × 2r)
enclosing the circle. We know the area of the
rectangle is Srec = (2r)2. If we can estimate the area
of the circle, then we can estimate π by π = Sc/r 2.
Draw a sample point from the rectangle area
uniformly. The chance of it being within the circle is
Sc/Srec. So if we throw enough points, we have
Nwithin/Ntotal ≈ Sc/Srec. Thus Sc ≈ SrecNwithin/Ntotal

See a matlab demo.

7 / 41

Monte Carlo

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

#1000, piest:3.156000,pi:3.141593

0 0.5 1 1.5 2
x 104

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Number of samples

π

Estimated π
True π

8 / 41

Monte Carlo

To estimate an expectation:
Generate samples xi ∼ q(X), i = 1, . . . ,N.

EX∼q(X)[f (X)] ≈ ÊX∼q(X)[f (X)]

=
1
N

N∑
i=1

f (xi),

9 / 41

Importance sampling
To compute EX∼p(X)[f (X)].
Assume p(x) (target distribution) is hard to sample from
directly, and q(x) (proposal distribution) is easy to sample
from and q(x) > 0 when p(x) > 0.

EX∼p(X)[f (X)] =

∫
x

p(x)f (x)dx

=

∫
x

q(x)
p(x)

q(x)
f (x)dx

= EX∼q(X)[
p(X)

q(X)
f (X)].

ÊX∼p(X)[f (X)] = ÊX∼q(X)[
p(X)

q(X)
f (X)],

where ÊX∼q(X)[f (X)] =
1
N

N∑
i=1

f (xi), xi ∼ q(X), i = 1, . . . ,N.
10 / 41

Acceptance-rejection sampling

Target: to sample X from p(x).
Given: q(x) easy to sample from.
Find a constant M such that M · q(x) ≥ p(x), ∀ x .
repeat

step 1: sample Y ∼ q(y)
step 2: sample U ∼ Uniform[0,1]

if U ≤ p(y)
M·q(y) then

then X = Y ;
else

reject and go to step 1.
end if

until sampled enough

11 / 41

Acceptance-rejection sampling

Proof:

∵ Pr(accept |X = x) =
p(x)

M · q(x)
and Pr(X = x) = q(x)

∴ Pr(accept) =

∫
x

Pr(accept |X = x) · Pr(X = x)dx

=

∫
x

p(x)

M · q(x)
· q(x)dx =

1
M

(thus don’t want M big)

∴ Pr(X |accept) =
Pr(accept |X) · P(X)

Pr(accept)

=

p(x)
M·q(x) · q(x)

1
M

= p(x).

12 / 41

Understanding AR sampling (1)

I guess the most confusing part, is why M comes in. So
let’s look at the case without M first.
Denote the histogram formed by n samples from q(x) as
Hn

q , the histogram formed by n samples from p(x) as Hn
p ,

the histogram formed by n accepted samples from AR
sampling procedure as Hn.
For a sample x ∼ q(x), if p(x) < q(x), it suggests if you
accept all the x and keep sampling this way, the
histogram you will get is Hn

q . But what you really want to
get, is a way that the resulting histogram H becomes Hn

p .
Rejecting some portion of x can make the histogram H
has the same shape as Hp at point x . In other words, the
histogram H has more counts at point x than Hp, so we
remove some counts to make H(x) = Hp(x). (Take a
moment to think this through).

13 / 41

Understanding AR sampling (2)

What if for a sample x ∼ q(x),p(x) > q(x)? The
histogram Hn

q already has less counts than Hn
p at x . What

do we do? Well, we can sample M × n points from q(x) to
build HMn

q first. Now HMn
q should have more counts than

Hn
p at x (because we choose a M such that p(x) < Mq(x)

for all x . If not, choose a larger M). Visually, HMn
q encloses

Hn
p . At point x , we only want to keep Hn

p (x) many samples
from totally HMn

q (x) many. This is how uniform sampling
and M came in. We sample u ∼ Uniform[0,Mq(x)],
accept x when u < p(x) (equivalent to sample
u ∼ Uniform[0,1], accept x when u < p(x)/Mq(x)). As a
result, after Mn samples, we will get a H close to Hn

p .
Moreover,

lim
n→∞

Hn = lim
n→∞

Hn
p = p.

14 / 41

Understanding AR sampling (3)

Here we can choose any M such that p(x) < Mq(x) for all
x . The bigger M is, the more samples (Mn samples) you
need to approximate Hn

p . That’s why in practice, people
want to use the smallest M (such that p(x) < Mq(x) for all
x) to reduce the number of rejected samples.

15 / 41

Markov chain Monte Carlo

Sampling from probability distributions based on
constructing a Markov chain that has the desired
distribution p(x) as its equilibrium distribution π(x).

Metropolis-Hastings algorithm
Gibbs sampling
. . .

16 / 41

Metropolis-Hastings algorithm

Ingredients:
want to sample from π(x) (but impossible directly).
sample from q(x) is easy.
a homogenous and stationary Markov chain with
transition kernel q(xt+1|xt).

17 / 41

Metropolis-Hastings algorithm

Properties of Markov chain: let (Xn)n≥0 be regular Markov
(λ,P), then for all n,m ≥ 0,

Pr(Xn = j) = (λP(n))j

exists an unique invariant (stationary) π′, for any λ,

Pr(Xn = j)→ π′j as n→∞ for all j

If detailed balance equation holds,

πiPij = πjPji ,

π is the invariant distribution.

18 / 41

Metropolis-Hastings algorithm

We know that for a regular markov chain, given transition
kernel q and initial distribution λ, sampling from the chain
will eventually become sampling from its invariant
distribution π′.
Metropolis-Hastings algorithm asks a reversed qestion:
How do we change q, such that the invariant distribution
becomes the desirable π instead of π′? That is, without
knowing π′, but knowing λ,q, we know there exists a π′,
such that (λq(n))→ π′ as n→∞. Now, knowing π, λ,q,
how do we find q′ such that (λq′(n))→ π as n→∞?

19 / 41

Metropolis-Hastings algorithm

Suppose have xt from π(x), to sample xt+1 from π(x).
Sample x ′ ∼ q(x |xt) first.
Case 1: If π(xt)q(x ′|xt) = π(x ′)q(xt |x ′) (detailed balance),
take xt+1 = x ′.
Case 2: if π(xt)q(x ′|xt) > π(x ′)q(xt |x ′), it means x ′ too
often. Need to accept it with probability α, such that
π(xt)[αq(x ′|xt)] = π(x ′)q(xt |x ′). So α = π(x ′)q(xt |x ′)

π(xt)q(x ′|xt)
. Accept

x ′ with probability α is simple: draw u ∼ Uniform[0,1]. If
u < α, xt+1 = x ′, else xt+1 = xt (so can resample
x ′ ∼ q(x |xt) again).
Case 3: if π(xt)q(x ′|xt) < π(x ′)q(xt |x ′), it means x ′ too
few. So accept all x ′. That is xt+1 = x ′.

20 / 41

Metropolis-Hastings algorithm

Target: to sample from π(x).
for t = 1,2, · · · ,N do

Generate x ′ ∼ q(x |xt), u ∼ Uniform[0,1]

A(xt → x ′) = min{1, π(x
′)q(xt |x ′)

π(xt)q(x ′|xt)
}

if u ≤ A(xt → x ′) then
xt+1 = x ′;

else
xt+1 = xt ;

end if
end for

So q′(x ′|xt) = A(x ′|xt)q(x ′|xt). One can check for any q

π(xt)q′(x ′|xt) = π(x ′)q′(xt |x ′).

So one can build Markov(λ,q′) from any q (as long as q
makes it regular), any λ , such that (λq′(n))→ π.

21 / 41

Metropolis-Hastings algorithm

Note a regular Markov(λ,q′) only essures (λq′(n))→ π as
n→∞. Thus we need n to be sufficiently big so that
{xt}t>n is sampled from a distribution that is close enough
to π. The number of steps we take until we collect a
sample from the chain, is called ’burn-in time’.

Definition
The ε-mixing time of a markov chain, is the minimal T
such that, for any starting distribution P(0) (i.e. λ),

Dvar (P(T); π) ≤ ε,

where Dvar (q,p) = supx ‖q(x)− p(x)‖ is the variational
distance.

22 / 41

Gibbs sampling

Target: to sample from p(X),X = (x1, · · · , xn)
i = 1
repeat

sample x i
t ∼ p(x i |x1

t , · · · , x i−1
t , x i+1

t−1 , · · · , xn
t−1)

i = i + 1
until enough

23 / 41

Sampling in PGM inference Overview

Forward sampling
Likelihood weighting sampling
Importance sampling inference
Gibbs sampling inference
Metropolis-Hastings inference
· · ·

24 / 41

Forward sampling

Given an ordering of subsets of random variables
{X i}n

i=1 (knowing parents to generate children).
for i = 1 to n do

ui ← Paxi−1

sample xi from P(X i |ui)
end for

G

I

J

S

D

H

L

Difficulty Intelligence

Grade

Happy

Letter

SAT

Job

P(I)

P(S | I)

P(J | L,S)

P(D)

P(G | D,I)

P(H | G,J)

P(L | G)

25 / 41

Forward sampling

Assume {xi}M
i=1 are M samples from P(X), we can

approximately compute
expectation:

EX∼P(X)[f (X)] ≈ 1
M

M∑
i=1

f (xi)

MAP solution: argmaxx P(x) ≈ argmaxx∈{xi}M
i=1

P(x)

marginal: P(x) ≈ NX=x/Ntotal

sample from P(X |e) when evidences e:
sample from P(X) first, and reject x when it does not
agree on e.

26 / 41

Forward sampling

Problems?

27 / 41

Forward sampling

Problem: Rejection step in estimating P(X |e) wastes too
many samples when P(e) is small. In real applications,
P(e) is almost always very small.

Question: how do we avoid rejecting samples?

28 / 41

Forward sampling

How about setting the observed random variables to the
observed values, and then doing forward sampling on the
rest?

29 / 41

Forward sampling

Let’s see if it works.
To sample from P(D, I,G,L|S = 0) from a simplified PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fixing S = 0, and then sample D, I,G,L.
Does this give the same result comparing to forward
sampling with rejection?

30 / 41

Forward sampling

No! It doesn’t.
The samples are not from P(D, I,G,L|S = 0) at all!
Fixing this lead to Likelihood weighting sampling.

31 / 41

Likelihood weighting sampling

Input: {Z i = zi}i are observed.
Step 1: set {Z i}i to the observed values.
Step 2: forward sampling the unobserved variables.
Step 3: weight the sample by

∏
i P(zi |Pa(zi))

32 / 41

Likelihood weighting sampling inference

To sample from P(D, I,G,L|S = 0) from the following
PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fix S = 0, and forward sample D, I,G,L. Then weight the
sample by P(D, I,G,L|S = 0).
Does this give the same result comparing to forward
sampling with rejection?

33 / 41

Likelihood weighting sampling

EX∼P(D,I,G,L|S=0)[f (D, I,G,L,0)]

≈ 1
N

N∑
j=1

[f (dj , ij ,gj , lj ,0) · P(dj , ij ,gj , lj |S = 0)]

34 / 41

Importance sampling inference

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(a) G1 with p(X)

⇒

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(b) G2 with q(X)

Mutilate

Sample {xi}N
i=1 from q(X).

ÊX∼p(X)[f (X)] =
1
N

N∑
i=1

p(xi)

q(xi)
f (xi).

35 / 41

Gibbs sampling inference

To sample from P(D, I,G,L|S = 0) from the following
PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

36 / 41

Gibbs sampling inference

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Target: To sample x ∼ P(D, I,G,L,S).
Given any order x(i) (say D, I,G,S,L). Randomly
initialise x. i = 1
repeat

sample x i ∼ P(x i |x−i)
i = i + 1

until enough
37 / 41

Gibbs sampling inference

P(x i |x−i) turns out easy to compute.

P(x i |x−i) =

∏
j P(x j |Pax j)∑

x i

∏
j P(x j |Pax j)

=

∏
j:x i∈Dj

Φ(x i ,Dj − {x i})∑
x i

∏
j:x i∈Dj

Φ(x i ,Dj − {x i})

Terms in which x i /∈ Dj cancel out. For example,

x1 = D ∼ P(D|G, I,S,L) =
q(D)q(G|D, I)∑
D q(D)q(G|D, I)

.

In BN, it also turns out the only variables remaining in
P(x i |x−i) are x i and its Markov blanket. Similarly in MRFs.

38 / 41

Metropolis-Hastings inference

Target: To sample x ∼ P(x).
Given any order x(i). Randomly initialise x. i = 1
for t = 1,2, · · · # iterations do

for i = 1,2, · · · # nodes do
Sample x i ∼ q(x i |x i

t , x
−i
t), u ∼ Uniform[0,1]

Instead of A(xt → x ′) = min{1, π(x
′)q(xt |x ′)

π(xt)q(x ′|xt)
}

A(x−i
t , x i

t → x−1
t , x i) = min{1, π(x

i ,x−1
t)q(x i

t |x
i ,x−i

t)

π(x i
t ,x
−i
t)q(x i |x i

t ,x
−1
t)
}

if u ≤ A(x−i
t , x i

t → x−1
t , x i) then

x i
t = x i ;

else
x i

t = x i
t ;

end if
end for
xt+1 = xt ;

end for
39 / 41

Metropolis-Hastings inference

π(x i ,x−1
t)q(x i

t |x
i ,x−i

t)

π(x i
t ,x
−i
t)q(x i |x i

t ,x
−1
t)

is easy to compute. In BN, the only

variables remaining above (the rest cancels out) are x i

and its Markov blanket. Similarly in MRFs.

Again, only collect samples after burn-in time.

40 / 41

Next tutorial:
Temporal Models (such as models used in tracking).

41 / 41

