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Course Outline

Probabilistic Graphical Models:

@ Representation

©Q Inference

© Learning

© Sampling-based approximate inference (Today)
© Temporal models

o -



Sampling Outline

@ Understanding samples
@ Sampling techniques overview
@ Sampling techniques in PGM inference



Understanding samples

In fact, there is no way to check ’a sample’ is from a
distribution or not — two totally different distributions can
generate the same sample. For example, uniform|0, 1]
and gaussian N(0, 1) can both generate a sample with
value 0. Looking at a sample with value = 0 alone, how do
you know its distribution for sure? What we really check
(and know for sure) is the way that the samples were
generated. When we say a procedure generates a
sample from a distribution P, what we really mean is that
keeping sampling this way (by the procedure), the
normalised histogram H"” with n samples is going to
converge to the distribution P. Thatis H” — P as n — ~c.
If we don’t know the way that the samples were
generated, we never know what’s the distribution for sure
— we can only guess (e.g. using statistical tests) based
on a number of available samples.



Sampling techniques overview

@ Monte Carlo

@ Importance sampling

@ Acceptance-rejection sampling

@ Markov chain Monte Carlo (MCMC)



Monte Carlo

Monte Carlo methods are a class of computational
algorithms that rely on repeated random sampling to
compute their results.

repeat

draw sample(s)

compute result according to the samples
until sampled enough ( or the result is stable)



Monte Carlo

To estimate = ( area of a circle with radius r is S, = 7r?).
ldea:

@ draw acircle ( r = 1) and a rectangle (2r x 2r)
enclosing the circle. We know the area of the
rectangle is Syec = (2r)2. If we can estimate the area
of the circle, then we can estimate = by = = S./r?.

@ Draw a sample point from the rectangle area
uniformly. The chance of it being within the circle is
Sc/ Srec- So if we throw enough points, we have
Nwithin/ Niotar = Sc/ Srec- Thus S; ~ Srechithin/ Niotar

See a matlab demo.



Monte Carlo
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Monte Carlo

To estimate an expectation:
Generate samples x; ~ q(X),i=1,...,N.

Exqu[f(X)] % Exq[f(X)]

1 N
- N Z f(Xi)a
i=1



Importance sampling

To compute Ex.px)[f(X)]-

Assume p(x) (target distribution) is hard to sample from
directly, and g(x) (proposal distribution) is easy to sample
from and g(x) > 0 when p(x) > 0.

Exo0)[(X)] = / P(x)F(x)dx

= /X q(x)%f(x)dx

= qu(Xﬂ%f (X)].

Exp00lf(X)] = Ex~qrx) [58((; FXI,
where B0 [f(X)] = 1N > f(x), %~ q(X),i=1,....N.

i=1
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Acceptance-rejection sampling

Target: to sample X from p(x).
Given: g(x) easy to sample from.
Find a constant M such that M - q(x) > p(x), V x.
repeat
step 1: sample Y ~ q(y)
step 2: sample U ~ Uniform|[0, 1]

i p)
if U< a0)) then

then X =Y;
else

reject and go to step 1.
end if

until sampled enough
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Acceptance-rejection sampling

Proof:

" Pr(accept| X = x) = MP (c);(()x) and  Pr(X = x) =q(x)

Pr(accept = / Pr(accept|X = x) - Pr(X = x)dx

x)dx = L ( thus don’t want M big)

M Cl M
_ Pr(accepl‘|x) - P(X)
pr(Xyaccept) ~  Pr(accept)
p(x)
-q(x)
= HA 2~ p(x).
M
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Understanding AR sampling (1)

| guess the most confusing part, is why M comes in. So
let’s look at the case without M first.

Denote the histogram formed by n samples from g(x) as
Hg, the histogram formed by n samples from p(x) as H,
the histogram formed by n accepted samples from AR
sampling procedure as H".

For a sample x ~ q(x), if p(x) < q(x), it suggests if you
accept all the x and keep sampling this way, the
histogram you will get is Hj. But what you really want to
get, is a way that the resulting histogram H becomes Hy.
Rejecting some portion of x can make the histogram H
has the same shape as H, at point x. In other words, the
histogram H has more counts at point x than H,, so we
remove some counts to make H(x) = Hp(x). (Take a
moment to think this through).
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Understanding AR sampling (2)

What if for a sample x ~ q(x), p(x) > q(x)? The
histogram Hj already has less counts than Hj at x. What
do we do? Well, we can sample M x n points from q(x) to
build Hy™ first. Now H}" should have more counts than
Hp at x (because we choose a M such that p(x) < Mq(x)
for all x. If not, choose a larger M). Visually, Hg”” encloses
Hp. At point x, we only want to keep H;(x) many samples
from totally Hg/’”(x) many. This is how uniform sampling
and M came in. We sample u ~ Uniform|0, Mq(x)],
accept x when u < p(x) (equivalent to sample
u ~ Uniform|[0, 1], accept x when u < p(x)/Mq(x)). As a
result, after Mn samples, we will get a H close to Hj.
Moreover,

lim H" = lim Hj = p.

n—oo n—oo
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Understanding AR sampling (3)

Here we can choose any M such that p(x) < Mq(x) for all
x. The bigger M is, the more samples (Mn samples) you
need to approximate H;. That's why in practice, people
want to use the smallest M (such that p(x) < Mq(x) for all
x) to reduce the number of rejected samples.
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Markov chain Monte Carlo

Sampling from probability distributions based on
constructing a Markov chain that has the desired
distribution p(x) as its equilibrium distribution 7 (x).

@ Metropolis-Hastings algorithm

@ Gibbs sampling

o ...
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Metropolis-Hastings algorithm

Ingredients:
@ want to sample from 7(x) (but impossible directly).
@ sample from q(x) is easy.

@ a homogenous and stationary Markov chain with
transition kernel g(x¢1|xt).
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Metropolis-Hastings algorithm

Properties of Markov chain: let (X,)q>0 be regular Markov
(A, P), then for all n,m > 0,

@ Pr(X, =j) = (\PM);
@ exists an unique invariant (stationary) «’, for any A\,

Pr(X,=j)—n as n—oo forall j
@ If detailed balance equation holds,
7Py = m;Pj,

7 is the invariant distribution.
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Metropolis-Hastings algorithm

We know that for a regular markov chain, given transition
kernel g and initial distribution A\, sampling from the chain
will eventually become sampling from its invariant
distribution 7'

Metropolis-Hastings algorithm asks a reversed gestion:
How do we change g, such that the invariant distribution
becomes the desirable 7 instead of 7’7 That is, without
knowing 7', but knowing X, g, we know there exists a 7/,
such that (Ag(") — 7’ as n — oo. Now, knowing T, ), g,
how do we find ¢’ such that (A\q"") — 7 as n — 0o?
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Metropolis-Hastings algorithm

Suppose have x; from = (x), to sample x;,¢ from 7(x).
Sample x" ~ q(x|x;) first.

Case 1: If w(xt)q(x’\x,) = m(x")q(x¢|x’) (detailed balance),
take x; 1 = Xx'.

Case 2: if 7(x;)q(X'|x;) > w(x")q(x¢|x’), it means x’ too
often. Need to accept it with probability «, such that
7()[0q(Xx)] = 7(X')q(xlx'). So a = TN “Accept
x’ with probability « is simple: draw u ~ Uniform|0, 1]. If
u<a, ;1 = X, else x4 = x; (80 can resample

x' ~ q(x|x) again).

Case 3: if 7(x;)g(x’ |xt) < 7(x")q(x¢|x’), it means x’ too
few. So accept all x’. That is x;,1 = x'.
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Metropolis-Hastings algorithm

Target: to sample from 7(x).
fort=1,2,--- /N do
Generate x’ ~ g(x|x;), u ~ Uniform[0, 1]
A(x; — x') = min{1, ZXJabax)y

m(x)q(x’|xt)
if u <A(x; — x’) then
Xty = X';
else
Xt+1 = Xt,
end if
end for

So q'(X'|x:) = A(X'|x:)g(x’|x;). One can check for any q

m(x)q' (X |xt) = 7(x)q (xi|x").

So one can build Markov(), q') from any g (as long as g
makes it regular), any \ , such that (A\qg'") — 7.
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Metropolis-Hastings algorithm

Note a regular Markov (), @') only essures (Aqg'(") — 7 as
n — oo. Thus we need n to be sufficiently big so that
{Xt}+~n is sampled from a distribution that is close enough
to w. The number of steps we take until we collect a
sample from the chain, is called 'burn-in time’.

Definition

The e-mixing time of a markov chain, is the minimal T

such that, for any starting distribution P (i.e. \),
Dvar(P(T); 7T) <,

where D,.(q, p) = sup, ||g(x) — p(x)|| is the variational
distance.
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Gibbs sampling

Target: to sample from p(X), X = (x',--- , x")
i=1
repeat . . . _
sample x{ ~ p(x'|x}, -, x{ " xH o xy)
i=i+1
until enough
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Sampling in PGM inference Overview

Forward sampling

Likelihood weighting sampling
Importance sampling inference
Gibbs sampling inference
Metropolis-Hastings inference
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Forward sampling

Given an ordering of subsets of random variables
{X"}1_ (knowing parents to generate children).
for /i = 1 to ndo

u' < Pa,i

sample x’ from P(X'| u’)
end for

Difficulty Intelligence
P(D)

m@% /62 -
Grade

P(GI D,l)

SII)

P(LI G)

PUILS)
Happ

PHIGJ)



Forward sampling

Assume {x;}M, are M samples from P(X), we can
approximately compute

@ expectation:

Ex.p x)[f MZfX,

@ MAP solution: argmax, P(X) ~ argmaXye o m P(x)

@ marginal: P(X) ~ Nx—x/Niota

@ sample from P(X|e) when evidences e:
sample from P(X) first, and reject x when it does not
agree on e.

26/41



Forward sampling

Problems?
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Forward sampling

Problem: Rejection step in estimating P(X|e) wastes too
many samples when P(e) is small. In real applications,
P(e) is almost always very small.

Question: how do we avoid rejecting samples?
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Forward sampling

How about setting the observed random variables to the
observed values, and then doing forward sampling on the
rest?
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Forward sampling

Let’s see if it works.
To sample from P(D, I, G, L|S = 0) from a simplified PGM.

Difficulty Intelligence

P(D) Pl)
i / 2 SAT
Grade @ PSI)
P(G1D,])
@ P(LIG) EB

Fixing S = 0, and then sample D, I/, G, L.
Does this give the same result comparing to forward
sampling with rejection?
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Forward sampling

No! It doesn’t.
The samples are not from P(D, I, G, L|S = 0) at all!
Fixing this lead to Likelihood weighting sampling.
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Likelihood weighting sampling

Input: {Z' = 2'}; are observed.

Step 1: set {Z'}; to the observed values.

Step 2: forward sampling the unobserved variables.
Step 3: weight the sample by [], P(z' |Pa(z’))
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Likelihood weighting sampling inference

To sample from P(D, I, G, L|S = 0) from the following
PGM.

Difficulty Intelligence

P(D) P()
i / z SAT
Grade PSI)
P(GID,l)
@ P(LIG) EB

Fix S = 0, and forward sample D, I, G, L. Then weight the
sample by P(D, I, G, L|S = 0).

Does this give the same result comparing to forward
sampling with rejection?
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Likelihood weighting sampling

Ex~pp,1,6,Ls=0)[f(D, I, G, L,0)]

N
1 . .
~ & 170§, 9. 4.0) - P(d . gy, 1S = O)]
j=1

34/41



Importance sampling inference

Difficulty Intelligence Difficulty Intelligence

m@g /g H e g m
Grade Grade

W08 e O
R

(@) G1 with p(X) (b) G2 with g(X)
Mutilate

Sample {x;}¥, from g(X).

N
Exp00[f(X)] = Z
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Gibbs sampling inference

To sample from P(D, I, G, L|S = 0) from the following
PGM.

Difficulty Intelligence
P(D)

P(GlDirade @T P(s1)
@ @% P(LIG) EH
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Gibbs sampling inference

Difficulty Intelligence

9 AL
%@g@ﬁ

Target: To sample x ~ P(D, I,
Given any order x) ( say D, I,
initialise x. i =1
repeat
sample x' ~ P(x'|x~")
i=i+1
until enough

G, L S).
G, S, L). Randomly
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Gibbs sampling inference

P(x'|x~") turns out easy to compute.
. - P(x| Pa,;
P(xX|x7") = L1, PlxlPay)
> I P(X|Pay)
 Tlwen ©0¢. Dy~ {x)
in Hj:xieDj ¢(Xi7 Dj - {Xi})

Terms in which x’ ¢ D; cancel out. For example,

1 _q(D)q(G|D, 1)
X =D~ PGS D = b)a(GID. )

In BN, it also turns out the only variables remaining in
P(x'|x~") are x' and its Markov blanket. Similarly in MRFs.

38/41



Metropolis-Hastings inference

Target: To sample x ~ P(x).
Given any order x(). Randomly initialise x. i = 1
fort=1,2,.--- # iterations do
fori=1,2, --- # nodes do
Sample x' ~ q(x'|x}, x,"), u ~ Uniform[O 1]

Instead of A(x; — x') = min{1,~ ﬁ(xt ;(5");,)} |
—i i 1 7r(X X Da(xd]x x)
A(Xt 7Xt — Xt 9 ) mln{ : )q(X;‘X{J(}W}

if u <A, x{ = x ", x") then
X{ = X';
else
X{ = X,
end if
end for
Xt41 = Xi,
end for
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Metropolis-Hastings inference

(g alx ) m In BN, the onl
T x a0 ) is easy to compute. , the only

variables remaining above (the rest cancels out) are x’
and its Markov blanket. Similarly in MRFs.

Again, only collect samples after burn-in time.
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Next tutorial:
Temporal Models (such as models used in tracking).
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