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Course Outline

Probabilistic Graphical Models:
1 Representation
2 Inference
3 Learning
4 Sampling-based approximate inference (Today)
5 Temporal models
6 · · ·
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Sampling Outline

Understanding samples
Sampling techniques overview
Sampling techniques in PGM inference
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Understanding samples
In fact, there is no way to check ’a sample’ is from a
distribution or not — two totally different distributions can
generate the same sample. For example, uniform[0,1]
and gaussian N(0,1) can both generate a sample with
value 0. Looking at a sample with value = 0 alone, how do
you know its distribution for sure? What we really check
(and know for sure) is the way that the samples were
generated. When we say a procedure generates a
sample from a distribution P, what we really mean is that
keeping sampling this way (by the procedure), the
normalised histogram Hn with n samples is going to
converge to the distribution P. That is Hn → P as n→∞.
If we don’t know the way that the samples were
generated, we never know what’s the distribution for sure
— we can only guess (e.g. using statistical tests) based
on a number of available samples.
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Sampling techniques overview

Monte Carlo
Importance sampling
Acceptance-rejection sampling
Markov chain Monte Carlo (MCMC)
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Monte Carlo

Monte Carlo methods are a class of computational
algorithms that rely on repeated random sampling to
compute their results.

repeat
draw sample(s)
compute result according to the samples

until sampled enough ( or the result is stable)
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Monte Carlo

To estimate π ( area of a circle with radius r is Sc = πr 2).
Idea:

draw a circle ( r = 1) and a rectangle (2r × 2r )
enclosing the circle. We know the area of the
rectangle is Srec = (2r)2. If we can estimate the area
of the circle, then we can estimate π by π = Sc/r 2.
Draw a sample point from the rectangle area
uniformly. The chance of it being within the circle is
Sc/Srec. So if we throw enough points, we have
Nwithin/Ntotal ≈ Sc/Srec. Thus Sc ≈ SrecNwithin/Ntotal

See a matlab demo.
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Monte Carlo
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Monte Carlo

To estimate an expectation:
Generate samples xi ∼ q(X ), i = 1, . . . ,N.

EX∼q(X)[f (X )] ≈ ÊX∼q(X)[f (X )]

=
1
N

N∑
i=1

f (xi),

9 / 41



Importance sampling
To compute EX∼p(X)[f (X )].
Assume p(x) (target distribution) is hard to sample from
directly, and q(x) (proposal distribution) is easy to sample
from and q(x) > 0 when p(x) > 0.

EX∼p(X)[f (X )] =

∫
x

p(x)f (x)dx

=

∫
x

q(x)
p(x)

q(x)
f (x)dx

= EX∼q(X)[
p(X )

q(X )
f (X )].

ÊX∼p(X)[f (X )] = ÊX∼q(X)[
p(X )

q(X )
f (X )],

where ÊX∼q(X)[f (X )] =
1
N

N∑
i=1

f (xi), xi ∼ q(X ), i = 1, . . . ,N.
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Acceptance-rejection sampling

Target: to sample X from p(x).
Given: q(x) easy to sample from.
Find a constant M such that M · q(x) ≥ p(x), ∀ x .
repeat

step 1: sample Y ∼ q(y)
step 2: sample U ∼ Uniform[0,1]

if U ≤ p(y)
M·q(y) then

then X = Y ;
else

reject and go to step 1.
end if

until sampled enough
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Acceptance-rejection sampling

Proof:

∵ Pr(accept |X = x) =
p(x)

M · q(x)
and Pr(X = x) = q(x)

∴ Pr(accept) =

∫
x

Pr(accept |X = x) · Pr(X = x)dx

=

∫
x

p(x)

M · q(x)
· q(x)dx =

1
M

( thus don’t want M big)

∴ Pr(X |accept) =
Pr(accept |X ) · P(X )

Pr(accept)

=

p(x)
M·q(x) · q(x)

1
M

= p(x).
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Understanding AR sampling (1)

I guess the most confusing part, is why M comes in. So
let’s look at the case without M first.
Denote the histogram formed by n samples from q(x) as
Hn

q , the histogram formed by n samples from p(x) as Hn
p ,

the histogram formed by n accepted samples from AR
sampling procedure as Hn.
For a sample x ∼ q(x), if p(x) < q(x), it suggests if you
accept all the x and keep sampling this way, the
histogram you will get is Hn

q . But what you really want to
get, is a way that the resulting histogram H becomes Hn

p .
Rejecting some portion of x can make the histogram H
has the same shape as Hp at point x . In other words, the
histogram H has more counts at point x than Hp, so we
remove some counts to make H(x) = Hp(x). (Take a
moment to think this through).
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Understanding AR sampling (2)

What if for a sample x ∼ q(x),p(x) > q(x)? The
histogram Hn

q already has less counts than Hn
p at x . What

do we do? Well, we can sample M × n points from q(x) to
build HMn

q first. Now HMn
q should have more counts than

Hn
p at x (because we choose a M such that p(x) < Mq(x)

for all x . If not, choose a larger M). Visually, HMn
q encloses

Hn
p . At point x , we only want to keep Hn

p (x) many samples
from totally HMn

q (x) many. This is how uniform sampling
and M came in. We sample u ∼ Uniform[0,Mq(x)],
accept x when u < p(x) (equivalent to sample
u ∼ Uniform[0,1], accept x when u < p(x)/Mq(x)). As a
result, after Mn samples, we will get a H close to Hn

p .
Moreover,

lim
n→∞

Hn = lim
n→∞

Hn
p = p.
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Understanding AR sampling (3)

Here we can choose any M such that p(x) < Mq(x) for all
x . The bigger M is, the more samples (Mn samples) you
need to approximate Hn

p . That’s why in practice, people
want to use the smallest M (such that p(x) < Mq(x) for all
x) to reduce the number of rejected samples.
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Markov chain Monte Carlo

Sampling from probability distributions based on
constructing a Markov chain that has the desired
distribution p(x) as its equilibrium distribution π(x).

Metropolis-Hastings algorithm
Gibbs sampling
. . .
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Metropolis-Hastings algorithm

Ingredients:
want to sample from π(x) (but impossible directly).
sample from q(x) is easy.
a homogenous and stationary Markov chain with
transition kernel q(xt+1|xt).

17 / 41



Metropolis-Hastings algorithm

Properties of Markov chain: let (Xn)n≥0 be regular Markov
(λ,P), then for all n,m ≥ 0,

Pr(Xn = j) = (λP(n))j

exists an unique invariant (stationary) π′, for any λ,

Pr(Xn = j)→ π′j as n→∞ for all j

If detailed balance equation holds,

πiPij = πjPji ,

π is the invariant distribution.
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Metropolis-Hastings algorithm

We know that for a regular markov chain, given transition
kernel q and initial distribution λ, sampling from the chain
will eventually become sampling from its invariant
distribution π′.
Metropolis-Hastings algorithm asks a reversed qestion:
How do we change q, such that the invariant distribution
becomes the desirable π instead of π′? That is, without
knowing π′, but knowing λ,q, we know there exists a π′,
such that (λq(n))→ π′ as n→∞. Now, knowing π, λ,q,
how do we find q′ such that (λq′(n))→ π as n→∞?
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Metropolis-Hastings algorithm

Suppose have xt from π(x), to sample xt+1 from π(x).
Sample x ′ ∼ q(x |xt) first.
Case 1: If π(xt)q(x ′|xt) = π(x ′)q(xt |x ′) (detailed balance),
take xt+1 = x ′.
Case 2: if π(xt)q(x ′|xt) > π(x ′)q(xt |x ′), it means x ′ too
often. Need to accept it with probability α, such that
π(xt)[αq(x ′|xt)] = π(x ′)q(xt |x ′). So α = π(x ′)q(xt |x ′)

π(xt )q(x ′|xt )
. Accept

x ′ with probability α is simple: draw u ∼ Uniform[0,1]. If
u < α, xt+1 = x ′, else xt+1 = xt (so can resample
x ′ ∼ q(x |xt) again).
Case 3: if π(xt)q(x ′|xt) < π(x ′)q(xt |x ′), it means x ′ too
few. So accept all x ′. That is xt+1 = x ′.
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Metropolis-Hastings algorithm

Target: to sample from π(x).
for t = 1,2, · · · ,N do

Generate x ′ ∼ q(x |xt), u ∼ Uniform[0,1]

A(xt → x ′) = min{1, π(x
′)q(xt |x ′)

π(xt )q(x ′|xt )
}

if u ≤ A(xt → x ′) then
xt+1 = x ′;

else
xt+1 = xt ;

end if
end for

So q′(x ′|xt) = A(x ′|xt)q(x ′|xt). One can check for any q

π(xt)q′(x ′|xt) = π(x ′)q′(xt |x ′).

So one can build Markov(λ,q′) from any q (as long as q
makes it regular), any λ , such that (λq′(n))→ π.
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Metropolis-Hastings algorithm

Note a regular Markov(λ,q′) only essures (λq′(n))→ π as
n→∞. Thus we need n to be sufficiently big so that
{xt}t>n is sampled from a distribution that is close enough
to π. The number of steps we take until we collect a
sample from the chain, is called ’burn-in time’.

Definition
The ε-mixing time of a markov chain, is the minimal T
such that, for any starting distribution P(0) (i.e. λ),

Dvar (P(T ); π) ≤ ε,

where Dvar (q,p) = supx ‖q(x)− p(x)‖ is the variational
distance.
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Gibbs sampling

Target: to sample from p(X),X = (x1, · · · , xn)
i = 1
repeat

sample x i
t ∼ p(x i |x1

t , · · · , x i−1
t , x i+1

t−1 , · · · , xn
t−1)

i = i + 1
until enough
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Sampling in PGM inference Overview

Forward sampling
Likelihood weighting sampling
Importance sampling inference
Gibbs sampling inference
Metropolis-Hastings inference
· · ·
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Forward sampling

Given an ordering of subsets of random variables
{X i}n

i=1 (knowing parents to generate children).
for i = 1 to n do

ui ← Paxi−1

sample xi from P(X i |ui)
end for

G

I

J

S

D

H

L

Difficulty Intelligence

Grade

Happy

Letter

SAT

Job

P(I)

P(S | I)

P(J | L,S)

P(D)

P(G | D,I)

P(H | G,J)

P(L | G)
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Forward sampling

Assume {xi}M
i=1 are M samples from P(X ), we can

approximately compute
expectation:

EX∼P(X)[f (X )] ≈ 1
M

M∑
i=1

f (xi)

MAP solution: argmaxx P(x) ≈ argmaxx∈{xi}M
i=1

P(x)

marginal: P(x) ≈ NX=x/Ntotal

sample from P(X |e) when evidences e:
sample from P(X ) first, and reject x when it does not
agree on e.
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Forward sampling

Problems?
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Forward sampling

Problem: Rejection step in estimating P(X |e) wastes too
many samples when P(e) is small. In real applications,
P(e) is almost always very small.

Question: how do we avoid rejecting samples?
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Forward sampling

How about setting the observed random variables to the
observed values, and then doing forward sampling on the
rest?
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Forward sampling

Let’s see if it works.
To sample from P(D, I,G,L|S = 0) from a simplified PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fixing S = 0, and then sample D, I,G,L.
Does this give the same result comparing to forward
sampling with rejection?
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Forward sampling

No! It doesn’t.
The samples are not from P(D, I,G,L|S = 0) at all!
Fixing this lead to Likelihood weighting sampling.
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Likelihood weighting sampling

Input: {Z i = zi}i are observed.
Step 1: set {Z i}i to the observed values.
Step 2: forward sampling the unobserved variables.
Step 3: weight the sample by

∏
i P(zi |Pa(zi))
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Likelihood weighting sampling inference

To sample from P(D, I,G,L|S = 0) from the following
PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Fix S = 0, and forward sample D, I,G,L. Then weight the
sample by P(D, I,G,L|S = 0).
Does this give the same result comparing to forward
sampling with rejection?
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Likelihood weighting sampling

EX∼P(D,I,G,L|S=0)[f (D, I,G,L,0)]

≈ 1
N

N∑
j=1

[f (dj , ij ,gj , lj ,0) · P(dj , ij ,gj , lj |S = 0)]
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Importance sampling inference

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(a) G1 with p(X )

⇒

G S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

I

(b) G2 with q(X )

Mutilate

Sample {xi}N
i=1 from q(X ).

ÊX∼p(X)[f (X )] =
1
N

N∑
i=1

p(xi)

q(xi)
f (xi).
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Gibbs sampling inference

To sample from P(D, I,G,L|S = 0) from the following
PGM.

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)
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Gibbs sampling inference

G

I

S

D

L

Difficulty Intelligence

Grade

Letter

SAT

P(I)

P(S | I)

P(D)

P(G | D,I)

P(L | G)

Target: To sample x ∼ P(D, I,G,L,S).
Given any order x(i) ( say D, I,G,S,L). Randomly
initialise x. i = 1
repeat

sample x i ∼ P(x i |x−i)
i = i + 1

until enough
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Gibbs sampling inference

P(x i |x−i) turns out easy to compute.

P(x i |x−i) =

∏
j P(x j |Pax j )∑

x i

∏
j P(x j |Pax j )

=

∏
j:x i∈Dj

Φ(x i ,Dj − {x i})∑
x i

∏
j:x i∈Dj

Φ(x i ,Dj − {x i})

Terms in which x i /∈ Dj cancel out. For example,

x1 = D ∼ P(D|G, I,S,L) =
q(D)q(G|D, I)∑
D q(D)q(G|D, I)

.

In BN, it also turns out the only variables remaining in
P(x i |x−i) are x i and its Markov blanket. Similarly in MRFs.
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Metropolis-Hastings inference

Target: To sample x ∼ P(x).
Given any order x(i). Randomly initialise x. i = 1
for t = 1,2, · · · # iterations do

for i = 1,2, · · · # nodes do
Sample x i ∼ q(x i |x i

t , x
−i
t ), u ∼ Uniform[0,1]

Instead of A(xt → x ′) = min{1, π(x
′)q(xt |x ′)

π(xt )q(x ′|xt )
}

A(x−i
t , x i

t → x−1
t , x i) = min{1, π(x

i ,x−1
t )q(x i

t |x
i ,x−i

t )

π(x i
t ,x
−i
t )q(x i |x i

t ,x
−1
t )
}

if u ≤ A(x−i
t , x i

t → x−1
t , x i) then

x i
t = x i ;

else
x i

t = x i
t ;

end if
end for
xt+1 = xt ;

end for
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Metropolis-Hastings inference

π(x i ,x−1
t )q(x i

t |x
i ,x−i

t )

π(x i
t ,x
−i
t )q(x i |x i

t ,x
−1
t )

is easy to compute. In BN, the only

variables remaining above (the rest cancels out) are x i

and its Markov blanket. Similarly in MRFs.

Again, only collect samples after burn-in time.
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Next tutorial:
Temporal Models (such as models used in tracking).
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