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Course Outline

Probabilistic Graphical Models:
1 Representation
2 Inference (Today)
3 Learning
4 Sampling-based approximate inference
5 Temporal models
6 · · ·
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Inference

Marginals and MAP
Variable Elimination (covered in the previous talk)
Max/sum-product (Message Passing, (Loopy) BP)
Junction Tree Algorithm
Linear Programming (LP) Relaxations
Graph Cut
. . .
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Marginal and MAP

X2

X4

X1

X3

Marginal inference: P(xi) =
∑
xj :j 6=i

P(x1, x2, x3, x4)

MAP inference: (x∗1 , x
∗
2 , x

∗
3 , x

∗
4 ) = argmax

x1,x2,x3,x4

P(x1, x2, x3, x4)

In general, x∗i 6= argmax
xi

P(xi)
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Marginals

When do we need marginals? Recall sum-product gives
marginals by q(xi) = ψ(xi)

∏
j∈Ne(i) mj→i(xi), for

P(xi) =
1
Z q(xi). Marginals are used to compute

normalisation constant
Z =

∑
xi

q(xi) =
∑

xj
q(xj) ∀i , j = 1, . . . .

log loss in CRFs is − log P(x1, . . . , xn) = log(Z ) + . . .

expectations like EP(xi )[φ(xi)] and EP(xi ,xj )[φ(xi , xj)],
where ψ(xi) = 〈φ(xi),w〉 and ψ(xi , xj) = 〈φ(xi , xj),w〉
Gradient of CRFs risk contains above expectations.
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MAP

When do we need MAP?
find the most likely configuration for (xi)i∈V in testing.
find the most violated constraint generated by (x †i )i∈V
in training (i.e. learning), e.g. by cutting plane method
(used in SVM-Struct) or by Bundle method for Risk
Minimisation (Teo JMLR2010).
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Max-product

P(x∗1 , x
∗
2 , x

∗
3 , x

∗
4 ) = max

x1,x2,x3,x4
P(x1, x2, x3, x4)

= max
x1,x2,x3,x4

ψ(x1, x2)ψ(x2, x3)ψ(x2, x4)ψ(x1)ψ(x2)ψ(x3)ψ(x4)

= max
x1,x2

[
. . .max

x3

(
ψ(x2, x3)ψ(x3)

)
max

x4

(
ψ(x2, x4)ψ(x4)

)]
= max

x1

[
ψ(x1)max

x2

(
ψ(x2)ψ(x1, x2)m3→2(x2)m4→2(x2)

)]
= max

x1

(
ψ(x1)m2→1(x1)

)
⇒ x∗1 = argmax

x1

(
ψ(x1)m2→1(x1)

)
x∗i = argmax

xi

(
ψ(xi)

∏
j∈Ne(i)

mj→i(xi)
)

mj→i(xi) = max
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)
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Max-product

Max/sum-product is also known as Message Passing and
Belief Propagation (BP).
In graphs with loops, running BP for several iterations is
known as Loopy BP (neither convergence nor optimal
guarantee in general).
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Junction Tree Algorithm

moralise (directed acyclic graph only)
triangulate (turn unchordal graphs to chordal ones)
construct junction tree (clique tree)
pick a clique as the root clique.
send message from the root to leaves, and send
messages from leaves to the root.
read marginals from junction tree and messages.
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Junction Tree Algorithm - moralise

Moralisation: connect the common parents, and turn all
edges to undirected ones.
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Junction Tree Algorithm - triangulate

Chordal if there is no cycle of length > 3.
Triangulation: keep adding short cut edges to cycles until

the graph’s chordal.
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Junction Tree Algorithm - construct junction
tree

build a clique tree and then find the maximal spanning
tree
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Junction Tree Algorithm - message passing

D,I,G G,I,S G,S,L L,S,J

G,H

I,G G,S S,L

G

P(C) =
1
Z

∏
c∈C

ψ(c), c1 = {D, I,G}, c2 = {G, I,S}, . . .

P(H) =
1
Z

∑
D,I,G,S,L,J

∏
c∈C

ψ(c)

re-arrange
∑

to eliminate variables
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Junction Tree Algorithm - message passing

D,I,G G,I,S G,S,L L,S,J

G,H

I,G G,S S,L

G

P(cr ) =
1
Z

∑
C \cr

( ∏
c∈Ne(cr )

mc→cr (cr )
)

mcs→ct (ct) =
∑

cs\(cs∩ct )

( ∏
c∈Ne(cs)\ct

mc→cs(cs)
)
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LP Relaxations

Assume pairwise MRFs with graph G(V,E)

P(X |Y) = 1
Z

∏
(i,j)∈E

ψi,j(xi , xj)
∏
i∈V

ψi(xi)

=
1
Z

exp
(
−
∑
(i,j)∈E

Ei,j(xi , xj)−
∑
i∈V

Ei(xi)
)

MAP X∗ = argmax
X

∏
(i,j)∈E

ψi,j(xi , xj)
∏
i∈V

ψi(xi)

= argmin
X

∑
(i,j)∈E

Ei,j(xi , xj) +
∑
i∈V

Ei(xi)
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LP Relaxations

argmin
X

∑
(i,j)∈E

Ei,j(xi , xj) +
∑
i∈V

Ei(xi)

⇔ the following Integer Program:

argmin
{q}

∑
(i,j)∈E

∑
xi ,xj

qi,j(xi , xj)Ei,j(xi , xj) +
∑
i∈V

∑
xi

qi(xi)Ei(xi)

s.t. qi,j(xi , xj) ∈ {0,1},
∑
xi ,xj

qi,j(xi , xj) = 1,
∑

xi

qi,j(xi , xj) = qj(xj).

Relax to Linear Program:

argmin
{q}

∑
(i,j)∈E

∑
xi ,xj

qi,j(xi , xj)Ei,j(xi , xj) +
∑
i∈V

∑
xi

qi(xi)Ei(xi)

s.t. qi,j(xi , xj) ∈ [0,1],
∑
xi ,xj

qi,j(xi , xj) = 1,
∑

xi

qi,j(xi , xj) = qj(xj).
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Examples using PGM inference

Show papers in
Image scene understanding
Semantic video understanding
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More inference methods including graph cut will be
covered in Advanced Topics or in discussion.
Next talk: Learning in graphical models.
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