Probabilistic Graphical Models (1): representation

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

15 April 2011

・ロト ・四ト ・ヨト ・ヨト

Probabilistic Graphical Models:

- Representation (Today)
- Inference
- Learning
- Sampling-based approximate inference
- Temporal models
- **6** ...

History

- Gibbs (1902) used undirected graphs in particles
- Wright (1921,1934) used directed graph in genetics
- In economists and social sci (Wold 1954, Blalock, Jr. 1971)
- In statistics (Bartlett 1935, Vorobev 1962, Goodman 1970, Haberman 1974)
- In AI, expert system (Bombal *et al.* 1972, Gorry and Barnett 1968, Warner *et al.* 1961)
- Widely accepted in late 1980s. Prob Reasoning in Intelli Sys (Pearl 1988), Pathfinder expert system (Heckerman *et al.* 1992)
- Hot since 2001. CRFs (Lafferty *et al.* 2001), SVM struct (Tsochantaridis etal 2004), *M*³Net (Taskar *et al.* 2004), DeepBeliefNet (Hinton *et al.* 2006)

Good books

- Chris Bishop's book "Pattern Recognition and Machine Learning" (Graphical Models are in chapter 8, which is available from his webpage) ≈ 60 pages
- Koller and Friedman's "Probabilistic Graphical Models" > 1000 pages
- Stephen Lauritzen's "Graphical Models"
- Michael Jordan's unpublished book "An Introduction to Probabilistic Graphical Models"
- • •

Three main types of graphical models

(a) Directed graph (b) Undirected graph (c) Factor graph

- Nodes represent random variables.
- Edges represent dependencies between variables
- Factors explicitly show which variables are used in each factor *i.e.* f₁(A, B)f₂(A, C)f₃(B, C)

Benefits of graphical models

- Relationships (and interactions) between variables are intuitive (such as conditional independences)
- compactly represent distributions of variables.
- have general inference algorithms (such as message-passing algorithms) to efficiently query P(A|B = b, C = c) or compute E_P[f] without enumerating all possible values of variables.

Independences give factorisation.

• Independence $A \perp B \Leftrightarrow P(A, B) = P(A)P(B)$

• Conditional Independence $A \perp B | C \Leftrightarrow P(A, B | C) = P(A | C)P(B | C)$

From graphs to factorisation

Directed Acyclic Graph: $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i|Pa_{x_i})$

イロン イロン イヨン イヨン

8/28

 $\Rightarrow P(A, B, C) = P(A)P(B|A)P(C|A, B)$

From graphs to factorisation

Undirected Graph: $P(x_1, ..., x_n) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{X}_c), Z = \sum_{\mathbf{X}} \prod_{c \in \mathcal{C}} \psi_c(\mathbf{X}_c),$ where *c* is an index set of a clique (fully connected subgraph), \mathbf{X}_c is the set of variables indicated by *c*.

 $\Rightarrow P(A, B, C) = \frac{1}{Z} \psi_{c_1}(A, B) \psi_{c_2}(A, C) \psi_{c_3}(B, C), \text{ when } \\ \mathbf{X}_{c_1} = \{A, B\}, \mathbf{X}_{c_2} = \{A, C\}, \mathbf{X}_{c_3} = \{B, C\} \\ \text{ or } P(A, B, C) = \frac{1}{Z} \psi_c(A, B, C), \text{ when } \mathbf{X}_c = \{A, B, C\}$

From graphs to factorisation

Factor Graph: $P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_i f_i(\mathbf{X}_i), Z = \sum_{\mathbf{X}} \prod_i f(\mathbf{X}_i)$

10/28

 $\Rightarrow P(A, B, C) = \frac{1}{Z}f_1(A, B)f_2(A, C)f_3(B, C)$

Case 1: *A* is said to be tail-to-tail.

11/28

Question: $B \perp C$?

Case 1:

Question: $B \perp C$? Answer: No.

$$P(B, C) = \sum_{A} P(A, B, C)$$

= $\sum_{A} P(B|A)P(C|A)P(A)$
 $\neq P(B)P(C)$ in general

Case 1:

イロン イロン イヨン イヨン

13/28

Question: $B \perp C | A$?

Case 1:

Question: $B \perp C | A$? Answer: Yes.

$$P(B, C|A) = \frac{P(A, B, C)}{P(A)}$$
$$= \frac{P(B|A)P(C|A)P(A)}{P(A)}$$
$$= P(B|A)P(C|A)$$

Case 2: *B* is said to be head-to-tail.

Question: $A \perp C$, $A \perp C | B$?

Case 3: *A* is said to be head-to-head.

16/28

Question: $B \perp C, B \perp C | A$?

Case 3:

Question: $B \perp C$, $B \perp C | A$?

$$\therefore P(A, B, C) = P(B)P(C)P(A|B, C),$$

$$\therefore P(B, C) = \sum_{A} P(A, B, C)$$

$$= \sum_{A} P(B)P(C)P(A|B, C)$$

$$= P(B)P(C)$$

Graph $G(\mathcal{V}, \mathcal{E})$ and nonintersecting sets $X, Y, O \subset \mathcal{V}$. How to check $X \perp Y | O$ just by reading the graph *G*? Consider all paths from any node $\in X$ to any node $\in Y$. A path is said to be blocked by *O*, if it includes a node such that either

- exists a node $\in O$ is either head-to-tail or tail-to-tail.
- does not exist a head-to-head node ∈ O, nor any of its descendants ∈ O.

If all paths from X to Y are blocked by O, then X is said to be d-separated (directed separated) from Y by O.

D-separation - Example

Questions: Is $A \perp F | C$? Check if A is d-separated from F by C. Is $A \perp F | D$? Check if A is d-separated from F by D.

Inference - variable elimination

What is P(A), or $\operatorname{argmax}_{A,B,C} P(A, B, C)$?

$$P(A) = \sum_{B,C} P(B)P(C)P(A|B,C)$$

= $\sum_{B} P(B) \sum_{C} P(C)P(A|B,C)$
= $\sum_{B} P(B)m_1(A,B)$ (*C* eliminated)
= $m_2(A)$ (*B* eliminated)

Inference - variable elimination

$$P(x_1, x_2, x_3) = \frac{1}{Z} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3)$$

$$P(x_1) = \frac{1}{Z} \sum_{x_2, x_3} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3)$$

= $\frac{1}{Z} \psi(x_1) \sum_{x_2} \left(\psi(x_1, x_2) \psi(x_2) \right) \sum_{x_3} \left(\psi(x_1, x_3) \psi(x_3) \right)$
= $\frac{1}{Z} \psi(x_1) m_{2 \to 1}(x_1) m_{3 \to 1}(x_1)$

Inference - variable elimination

$$P(x_2) = \frac{1}{Z} \psi(x_2) \sum_{x_1} \left(\psi(x_1, x_2) \psi(x_1) \sum_{x_3} [\psi(x_1, x_3) \psi(x_3)] \right)$$

= $\frac{1}{Z} \psi(x_2) \sum_{x_1} \psi(x_1, x_2) \psi(x_1) m_{3 \to 1}(x_1)$
= $\frac{1}{Z} \psi(x_2) m_{1 \to 2}(x_2)$

<ロ> <問> <問> < 同> < 同> 、

In general,

$$P(x_i) = \frac{1}{Z} \psi(x_i) \prod_{j \in Ne(i)} m_{j \to i}(x_i)$$
$$m_{j \to i}(x_i) = \sum_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in Ne(j) \setminus \{i\}} m_{k \to j}(x_j) \right)$$

◆ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Inference - sum-product

called sum-product algorithm or belief propagation.

Inference - max-product

To compute $(x_1^*, \dots, x_4^*) = \operatorname{argmax}_{x_1^*, \dots, x_4^*} P(x_1^*, \dots, x_4^*)$, use max-product algorithm.

To avoid over/underflow,

$$egin{aligned} \log \mathcal{P}(\mathbf{x}_i) &= \log(\psi(\mathbf{x}_i)) + \sum_{j \in \mathit{Ne}(i)} \mu_{j
ightarrow i}(\mathbf{x}_i) - \log(\mathcal{Z}) \ \mu_{j
ightarrow i}(\mathbf{x}_i) &:= \log m_{j
ightarrow i}(\mathbf{x}_i) \end{aligned}$$

・ロ・・ (日・・ ヨ・・

A real application

Denoising¹

 $X^* = \operatorname{argmax}_X P(X|Y)$

¹This example is from Tiberio Caetano's short course: "Machine Learning using Graphical Models"

More details of BP and other inference methods will be covered at the next talk.

<ロ> <問> <問> < 回> < 回> 、

э