Probabilistic Graphical Models (1): representation

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

15 April 2011

Course Outline

Probabilistic Graphical Models:
(1) Representation (Today)
(2) Inference
(3) Learning
(3) Sampling-based approximate inference
(3) Temporal models
((\cdot

History

- Gibbs (1902) used undirected graphs in particles
- Wright $(1921,1934)$ used directed graph in genetics
- In economists and social sci (Wold 1954, Blalock, Jr. 1971)
- In statistics (Bartlett 1935, Vorobev 1962, Goodman 1970, Haberman 1974)
- In AI, expert system (Bombal et al. 1972, Gorry and Barnett 1968, Warner et al. 1961)
- Widely accepted in late 1980s. Prob Reasoning in Intelli Sys (Pearl 1988), Pathfinder expert system (Heckerman et al. 1992)
- Hot since 2001. CRFs (Lafferty et al. 2001), SVM struct (Tsochantaridis etal 2004), $M^{3} \mathrm{Net}$ (Taskar et al. 2004), DeepBeliefNet (Hinton et al. 2006)

Good books

- Chris Bishop's book "Pattern Recognition and Machine Learning" (Graphical Models are in chapter 8, which is available from his webpage) ≈ 60 pages
- Koller and Friedman's "Probabilistic Graphical Models" > 1000 pages
- Stephen Lauritzen's "Graphical Models"
- Michael Jordan's unpublished book "An Introduction to Probabilistic Graphical Models"
- ...

Three main types of graphical models

(a) Directed graph
(b) Undirected graph
(c) Factor graph

- Nodes represent random variables.
- Edges represent dependencies between variables
- Factors explicitly show which variables are used in each factor i.e. $f_{1}(A, B) f_{2}(A, C) f_{3}(B, C)$

Benefits of graphical models

- Relationships (and interactions) between variables are intuitive (such as conditional independences)
- compactly represent distributions of variables.
- have general inference algorithms (such as message-passing algorithms) to efficiently query $P(A \mid B=b, C=c)$ or compute $\mathbb{E}_{P}[f]$ without enumerating all possible values of variables.

Independences and factorisation

Independences give factorisation.

- Independence
$A \Perp B \Leftrightarrow P(A, B)=P(A) P(B)$
- Conditional Independence
$A \Perp B \mid C \Leftrightarrow P(A, B \mid C)=P(A \mid C) P(B \mid C)$

From graphs to factorisation

Directed Acyclic Graph:
$P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid P a_{x_{i}}\right)$

$\Rightarrow P(A, B, C)=P(A) P(B \mid A) P(C \mid A, B)$

From graphs to factorisation

Undirected Graph:
$P\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{z} \prod_{c \in \mathcal{E}} \psi_{c}\left(\mathbf{X}_{c}\right), Z=\sum_{\mathbf{x}} \prod_{c \in \mathcal{E}} \psi_{c}\left(\mathbf{X}_{c}\right)$, where c is an index set of a clique (fully connected subgraph), \mathbf{X}_{c} is the set of variables indicated by c.

$\Rightarrow P(A, B, C)=\frac{1}{2} \psi_{c_{1}}(A, B) \psi_{c_{2}}(A, C) \psi_{c_{3}}(B, C)$, when
$\mathbf{X}_{c_{1}}=\{A, B\}, \mathbf{X}_{c_{2}}=\{A, C\}, \mathbf{X}_{c_{3}}=\{B, C\}$
or $P(A, B, C)=\frac{1}{2} \psi_{c}(A, B, C)$, when $\mathbf{X}_{c}=\{A, B, C\}$

From graphs to factorisation

Factor Graph:
$P\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i} f_{i}\left(\mathbf{X}_{i}\right), Z=\sum_{\mathbf{x}} \prod_{i} f\left(\mathbf{X}_{i}\right)$

$\Rightarrow P(A, B, C)=\frac{1}{2} f_{1}(A, B) f_{2}(A, C) f_{3}(B, C)$

From graphs to independences

Case 1: A is said to be tail-to-tail.

4 Head
Tail

Question: $B \Perp C$?

From graphs to independences

Case 1:

Question: $B \Perp C$?
Answer: No.

$$
\begin{aligned}
P(B, C) & =\sum_{A} P(A, B, C) \\
& =\sum_{A} P(B \mid A) P(C \mid A) P(A) \\
& \neq P(B) P(C) \text { in general }
\end{aligned}
$$

From graphs to independences

Case 1:

Question: $B \Perp C \mid A$?

From graphs to independences

Case 1:

Question: $B \Perp C \mid A$? Answer: Yes.

$$
\begin{aligned}
P(B, C \mid A) & =\frac{P(A, B, C)}{P(A)} \\
& =\frac{P(B \mid A) P(C \mid A) P(A)}{P(A)} \\
& =P(B \mid A) P(C \mid A)
\end{aligned}
$$

From graphs to independences

Case 2: B is said to be head-to-tail.

Question: $A \Perp C, A \Perp C \mid B$?

From graphs to independences

Case 3: A is said to be head-to-head.

Question: $B \Perp C, B \Perp C \mid A$?

From graphs to independences

Case 3:

Question: $B \Perp C, B \Perp C \mid A$?

$$
\begin{aligned}
\because P(A, B, C) & =P(B) P(C) P(A \mid B, C), \\
\therefore P(B, C) & =\sum_{A} P(A, B, C) \\
& =\sum_{A} P(B) P(C) P(A \mid B, C) \\
& =P(B) P(C)
\end{aligned}
$$

D-separation - def

Graph $G(\mathcal{V}, \mathcal{E})$ and nonintersecting sets $X, Y, O \subset \mathcal{V}$. How to check $X \Perp Y \mid O$ just by reading the graph G ?
Consider all paths from any node $\in X$ to any node $\in Y$. A path is said to be blocked by O, if it includes a node such that either

- exists a node $\in O$ is either head-to-tail or tail-to-tail.
- does not exist a head-to-head node $\in O$, nor any of its descendants $\in O$.
If all paths from X to Y are blocked by O, then X is said to be d-separated (directed separated) from Y by O.

D-separation - Example

Questions:
Is $A \Perp F \mid C$? Check if A is d-separated from F by C.
Is $A \Perp F \mid D$? Check if A is d-separated from F by D.

Inference - variable elimination

What is $P(A)$, or $\operatorname{argmax}_{A, B, C} P(A, B, C)$?

$$
\begin{aligned}
P(A) & =\sum_{B, C} P(B) P(C) P(A \mid B, C) \\
& =\sum_{B} P(B) \sum_{C} P(C) P(A \mid B, C) \\
& =\sum_{B} P(B) m_{1}(A, B) \quad(C \text { eliminated }) \\
& =m_{2}(A) \quad(B \text { eliminated })
\end{aligned}
$$

Inference - variable elimination

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{Z} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{1}\right) \psi\left(x_{2}\right) \psi\left(x_{3}\right) \\
& P\left(x_{1}\right)=\frac{1}{Z} \sum_{x_{2}, x_{3}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}, x_{3}\right) \psi\left(x_{1}\right) \psi\left(x_{2}\right) \psi\left(x_{3}\right) \\
&=\frac{1}{Z} \psi\left(x_{1}\right) \sum_{x_{2}}\left(\psi\left(x_{1}, x_{2}\right) \psi\left(x_{2}\right)\right) \sum_{x_{3}}\left(\psi\left(x_{1}, x_{3}\right) \psi\left(x_{3}\right)\right) \\
&=\frac{1}{Z} \psi\left(x_{1}\right) m_{2 \rightarrow 1}\left(x_{1}\right) m_{3 \rightarrow 1}\left(x_{1}\right)
\end{aligned}
$$

Inference - variable elimination

$$
\begin{aligned}
P\left(x_{2}\right) & =\frac{1}{Z} \psi\left(x_{2}\right) \sum_{x_{1}}\left(\psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}\right) \sum_{x_{3}}\left[\psi\left(x_{1}, x_{3}\right) \psi\left(x_{3}\right)\right]\right) \\
& =\frac{1}{Z} \psi\left(x_{2}\right) \sum_{x_{1}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{1}\right) m_{3 \rightarrow 1}\left(x_{1}\right) \\
& =\frac{1}{Z} \psi\left(x_{2}\right) m_{1 \rightarrow 2}\left(x_{2}\right)
\end{aligned}
$$

Inference - Message Passing

In general,

$$
\begin{aligned}
P\left(x_{i}\right) & =\frac{1}{Z} \psi\left(x_{i}\right) \prod_{j \in \operatorname{Ne}(i)} m_{j \rightarrow i}\left(x_{i}\right) \\
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}}\left(\psi\left(x_{j}\right) \psi\left(x_{i}, x_{j}\right) \prod_{k \in N e(j) \backslash\{i\}} m_{k \rightarrow j}\left(x_{j}\right)\right)
\end{aligned}
$$

Inference - sum-product

called sum-product algorithm or belief propagation.

Inference - max-product

To compute $\left(x_{1}^{*}, \cdots, x_{4}^{*}\right)=\operatorname{argmax}_{x_{1}^{*}, \cdots, x_{4}^{*}} P\left(x_{1}^{*}, \cdots, x_{4}^{*}\right)$, use max-product algorithm.

Inference - Message Passing in Log Space

To avoid over/underflow,

$$
\begin{aligned}
\log P\left(x_{i}\right) & =\log \left(\psi\left(x_{i}\right)\right)+\sum_{j \in N e(i)} \mu_{j \rightarrow i}\left(x_{i}\right)-\log (Z) \\
\mu_{j \rightarrow i}\left(x_{i}\right) & :=\log m_{j \rightarrow i}\left(x_{i}\right)
\end{aligned}
$$

A real application

Denoising ${ }^{1}$

$X^{*}=\operatorname{argmax}_{X} P(X \mid Y)$
${ }^{1}$ This example is from Tiberio Caetano's short course: "Machine Learning using Graphical Models"

More details of BP and other inference methods will be covered at the next talk.

