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Course Outline

Generalisation Bounds:
@ Basics
© VC dimensions and bounds (Today)
© Rademacher complexity and bounds
© PAC Bayesian Bounds
Q -



Recap: finite many hypotheses

For an finite hypothesis set § = {g1,--- , gn}. We have
with probability at least 1 — 9,

log N + log(3
Vgeg,R(g)an(gH\/ g - 9()

log N + log(}
¥g < 5.A(g) < A(g) + 2\/ 20N ogt)




Infinite many hypotheses (1)

Though there are infinite many g in G, there are only two
possible outputs for a x (because g(x) € {—1,+1}). What
matters is the “expressive power” (Blumer et al.
1986,1989)( e.g. the number of different prediction
outputs), not the cardinality of G.



Infinite many hypotheses (2)

For an infinite hypothesis set, for any n training examples,
there are at most 2" different outputs of g(x).
For any finite n, 2" is finite.

Problem:
log(27) +1og(5) _ /1 log(5)
2n ) 2n

is too loose. We need something shrinks to zero as n
goes to infinity.



Growth function

Definition (Growth function)

The growth function (a.k.a Shatter coefficient) of F with n
points is

Ss(n)= sup |{(f(z1), - ,f(z)): feTF}.

(21 [ 7Zn)

i.e. maximum number of ways that n points can be
classified by the hypothesis set F.



VC dimension (1)

Definition (VC dimension)

The VC dimension of a hypothesis set G, is the largest n
such that

Sg(n) =2"

The growth function Sg(n) = 8 for n = 3 and G being the
half-space shown in the image below’.

A

'The image is from http://www.svms.org/vc-dimension/




VC dimension (2)

Lemma

Let G be a set of functions with finite VC dimension h.
Then for alln € N,

Si(n) < i (7).

and for all n > h,

So(m) < ()",




VC dimension (3)

Theorem (Growth function bound)
For any § € (0,1), with probability at least1 — o, Vg €

2Iog Ss(2n) + log(2)
n

R(9) < Rnx(9) + 2\/

Theorem (VC bound)
For any ¢ € (0,1), with probability at least1 — 4, Vg € G

hlog 227 + log (2
R(g) < Rn(g)+2\/2 %97 n+ 09(5).




VC dimension (4)

Assume x € R? ®(x) € R? (Note D can be +o).
¢ linear <X7 W>, h= d+ 1
@ polynomial ((x,w) + 1)P, h = (d+p 41

@ Gaussian RBF exp (— M) h = +oc.

@ Margin ~, h < min{D, [ ®1}, where the radius

R? = max?_, (d(x;), d(x )> (assuming data are
already centered)
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Proof of growth function/VC bound (1)

One way to prove it is to use Symmetrisation lemma and
a variant of Hoeffding inequality.

Lemma (Symmetrisation)
For any t > 0, such that nt*> > 2,

Pr [S,‘E‘E (EZNP(Z)[f(z)] - %éf{z,-)) > t]

< 2Pr [sup (%if(zf) - %if(z,-)) = é]

feF

Here {z/} , are called a “ghost sample”.
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Proof of growth function/VC bound (2)

Theorem (Hoeffding2)

Letzy, -, Z,,Z{,--- ,Z;, be2n iid. random variables
with f(Z) € [a, b]. Then for all ¢ > 0, we have

Pr(%zn:f(Z;)—%zn:f(Z/)>€> éexp(—g(bn—i)ﬁ
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Proof of growth function/VC bound (3)

Pr|sup (R(9) - Ru(g)) = 2¢|

g€es

< 2Pr [Zgg (Ri(g) — Aulg)) = €|

wol, o (0 Fi) 2
< 25;(2n)Pr | (Ry(9) ~ Rnl9)) = €]

2

Ne
2 )

< 28g(2n) exp(

Let § = 239(2[7) eXp( 7562), we have ¢ = \/2|0g 39(2”)“09(%).

n

R(g) - Rn(g) < 2¢ = 2,299 5C+9E) \ith probability at
least 1 — 6.
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Related concepts

@ VC Entropy
@ Covering Number

@ Rademacher complexity (will be covered in the next
talk)
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