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Recap: finite many hypotheses

For an finite hypothesis set G = {g1, · · · ,gN}. we have
with probability at least 1− δ,

∀g ∈ G,R(g) ≤ Rn(g) +

√
log N + log(1

δ
)

2n

∀g ∈ G,R(g) ≤ R(g∗) + 2

√
log N + log(1

δ
)

2n
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Infinite many hypotheses (1)

Though there are infinite many g in G, there are only two
possible outputs for a x (because g(x) ∈ {−1,+1}). What
matters is the “expressive power” (Blumer et al.
1986,1989)( e.g. the number of different prediction
outputs), not the cardinality of G.
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Infinite many hypotheses (2)

For an infinite hypothesis set, for any n training examples,
there are at most 2n different outputs of g(x).
For any finite n, 2n is finite.
Problem: √

log(2n) + log(1
δ
)

2n
=

√
1
2

+
log(1

δ
)

2n

is too loose. We need something shrinks to zero as n
goes to infinity.
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Growth function

Definition (Growth function)
The growth function (a.k.a Shatter coefficient) of F with n
points is

SF(n) = sup
(z1,··· ,zn)

|{(f (z1), · · · , f (zn)) : f ∈ F}|.

i.e. maximum number of ways that n points can be
classified by the hypothesis set F.
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VC dimension (1)

Definition (VC dimension)
The VC dimension of a hypothesis set G, is the largest n
such that

SG(n) = 2n.

The growth function SG(n) = 8 for n = 3 and G being the
half-space shown in the image below1.

1The image is from http://www.svms.org/vc-dimension/
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VC dimension (2)

Lemma
Let G be a set of functions with finite VC dimension h.
Then for all n ∈ N,

SG(n) ≤
h∑

i=0

(
n
i

)
,

and for all n ≥ h,
SG(n) ≤ (

en
h

)h.
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VC dimension (3)

Theorem (Growth function bound)
For any δ ∈ (0,1), with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2

log SG(2n) + log(2
δ
)

n

Thus for all n ≥ h, since SG(n) ≤ (en
h )h, we have

Theorem (VC bound)
For any δ ∈ (0,1), with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2

h log 2en
h + log(2

δ
)

n
.
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VC dimension (4)

Assume x ∈ Rd ,Φ(x) ∈ RD (Note D can be +∞).
linear 〈x ,w〉, h = d + 1
polynomial (〈x ,w〉+ 1)p, h =

(d+p−1
p

)
+ 1

Gaussian RBF exp (−‖x−x ′‖2

σ2 ), h = +∞.

Margin γ, h ≤ min{D, d4R2

γ2 e}, where the radius
R2 = maxn

i=1 〈Φ(xi),Φ(xi)〉 (assuming data are
already centered)
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Proof of growth function/VC bound (1)

One way to prove it is to use Symmetrisation lemma and
a variant of Hoeffding inequality.

Lemma (Symmetrisation)

For any t > 0, such that nt2 ≥ 2,

Pr
[

sup
f∈F

(
Ez∼P(z)[f (z)]− 1

n

n∑
i=1

f (zi)
)
≥ t
]

≤ 2 Pr
[

sup
f∈F

(1
n

n∑
i=1

f (z ′i )−
1
n

n∑
i=1

f (zi)
)
≥ t

2

]
Here {z ′i }n

i=1 are called a “ghost sample”.
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Proof of growth function/VC bound (2)

Theorem (Hoeffding2)
Let Z1, · · · ,Zn,Z ′1, · · · ,Z ′n be 2n i.i.d. random variables
with f (Z ) ∈ [a,b]. Then for all ε > 0, we have

Pr
(1

n

n∑
i=1

f (Zi)−
1
n

n∑
i=1

f (Z ′i ) > ε
)
≤ exp

(
− nε2

2(b − a)2

)
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Proof of growth function/VC bound (3)

Pr
[

sup
g∈G

(
R(g)− Rn(g)

)
≥ 2ε

]
≤ 2 Pr

[
sup
g∈G

(
R′n(g)− Rn(g)

)
≥ ε
]

= 2 Pr
[

sup
g∈Gz1,··· ,zn,z1,··· ,z

′
n

(
R′n(g)− Rn(g)

)
≥ ε
]

≤ 2SG(2n) Pr
[(

R′n(g)− Rn(g)
)
≥ ε
]

≤ 2SG(2n) exp(
−nε2

2
).

Let δ = 2SG(2n) exp(−nε2
2 ), we have ε =

√
2 log SG(2n)+log( 2

δ
)

n .

R(g)− Rn(g) ≤ 2ε = 2
√

2 log SG(2n)+log( 2
δ
)

n with probability at
least 1− δ.
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Related concepts

VC Entropy
Covering Number
Rademacher complexity (will be covered in the next
talk)
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