Generalisation Bounds (1): Basics

Qinfeng (Javen) Shi

The Australian Centre for Visual Technologies, The University of Adelaide, Australia

13 April 2012

Course Outline

Generalisation Bounds:
(1) Basics (Today)
(2) VC dimensions and bounds
(3) Rademacher complexity and bounds
(9) PAC Bayesian Bounds
(5) ...

History

- Pionneered by Vapnik and Chervonenkis (1968, 1971), Sauer (1972), Shelah (1972) as Vapnik-Chevonenkis-Sauer Lemma
- Introduced in the west by Valiant (1984) under the name of "probably approximately correct" (PAC)
Typical results state that with probability at least $1-\delta$ (probably), any classifier from hypothesis class which has low training error will have low generalisation error (approximately correct).
- Learnability and the VC dimension by Blumer et al. (1989), forms the basis of statistical learning theory
- Generalisation bounds, (1) SRM, Shawe-Taylor, Bartlett, Williamson, Anthony, (1998),
(2) Neural Networks, Bartlett (1998).
- Soft margin bounds, Cristianini, Shawe-Taylor (2000), Shawe-Taylor, Cristianini (2002)

History

- Apply Concentration inequalities, Boucheron et al. (2000), Bousquet, Elisseff (2001)
- Rademacher complexity, Koltchinskii, Panchenko (2000), Kondor, Lafferty (2002), Bartlett, Boucheron, Lugosi (2002), Bartlett, Mendelson (2002)
- PAC-Bayesian Bound proposed by McAllester (1999), improved by Seeger (2002) in Gaussian processes, applied to SVMs by Langford, Shawe-Taylor (2002), Tutorial by Langford (2005), greatly simplified proof by Germain et al. (2009).

Good books/tutorials

- J Shawe-Taylor, N Cristianini's book "Kernel Methods for Pattern Analysis", 2004
- V Vapnik's books "The nature of statistical learning theory", 1995 and "Statistical learning theory", 1998
- Bousquet et al.'s ML summer school tutorial "Introduction to Statistical Learning Theory", 2004
- ...

Risk

Given $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}$ sampled from a unknown but fixed distribution $P(x, y)$, the goal is to learn a hypothesis function $g: X \rightarrow y$, for now assume $y=\{-1,1\}$.

A typical $g(x)=\operatorname{sign}(\langle\phi(x), w\rangle)$, where $\operatorname{sign}(z)=1$ if $z>0, \operatorname{sign}(z)=-1$ otherwise. Given a loss $\ell(x, y, f)$, (True) Risk

$$
R(w, \ell)=\mathbb{E}_{(x, y) \sim p} \ell(x, y, w)
$$

Empirical Risk

$$
R_{n}(w, \ell)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}, y_{i}, w\right)
$$

The hinge loss $\ell(x, y, w)=[1-y\langle\phi(x), w\rangle]_{+}$.
The zero-one loss $\ell(x, y, w)=\mathbf{1}_{g(x) \neq y}$.

Generalisation error

Generalisation error is the error rate over all possible testing data from the distribution P, that is the risk w.r.t. zero loss,

$$
R(g)=\mathbb{E}_{(x, y) \sim P}\left[\mathbf{1}_{g(x) \neq y}\right]
$$

(Zero-one) Empirical risk

$$
R_{n}(g)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{g\left(x_{i}\right) \neq y_{i}},
$$

which is in fact the training error.

Regularised empirical risk minimisation

$$
g_{n}=\underset{g \in \mathcal{G}}{\operatorname{argmin}} R_{n}(g)+\lambda \Omega(g),
$$

where $\Omega(g)$ is the regulariser, e.g. $\Omega(g)=\|g\|^{2} . \mathcal{G}$ is the hypothesis set. Unfortunately, above is not convex. It turns out that one can optimise

$$
w_{n}=\underset{w \in \mathcal{W}}{\operatorname{argmin}} R_{n}(w, \ell)+\lambda \Omega(w),
$$

as long as ℓ is a surrogate loss of the zero-one loss.

Approximation error and estimation error

$$
\begin{gathered}
g_{\text {bayes }}=\underset{g}{\operatorname{argmin}} R(g) \\
g^{*}=\underset{g \in \mathcal{G}}{\operatorname{argmin}} R(g) \\
g_{n}=\underset{g \in \mathcal{G}}{\operatorname{argmin}} R_{n}(g)
\end{gathered}
$$

$R\left(g_{n}\right)-R\left(g_{\text {bayes }}\right)=\underbrace{\left[R\left(g^{*}\right)-R\left(g_{\text {bayes }}\right)\right]}_{\text {approximation error }}+\underbrace{\left[R\left(g_{n}\right)-R\left(g^{*}\right)\right]}_{\text {estimation error }}$
Typical error bounds:

$$
\begin{array}{r}
R\left(g_{n}\right) \leq R_{n}\left(g_{n}\right)+B_{1}(n, \mathcal{G}) \\
R\left(g_{n}\right) \leq R\left(g^{*}\right)+B_{2}(n, \mathcal{G}) \\
R\left(g_{n}\right) \leq R\left(g_{\text {bayes }}\right)+B_{3}(n, \mathcal{G}), \tag{3}
\end{array}
$$

where $B(n, \mathcal{G}) \geq 0$ (and usually $B(n, \mathcal{G}) \rightarrow 0$ as $n \rightarrow+\infty)$,

From Hoeffding's ineqaulity to a bound (1)

How to get $R(g) \leq R_{n}(g)+B(n, \mathcal{G})$?

From Hoeffding's ineqaulity to a bound (2)

Theorem (Hoeffding)

Let Z_{1}, \cdots, Z_{n} be n i.i.d. random variables with $f(Z) \in[a, b]$. Then for all $\epsilon>0$, we have

$$
\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} f\left(Z_{i}\right)-\mathbb{E}[f(Z)]\right|>\epsilon\right) \leq 2 \exp \left(-\frac{2 n \epsilon^{2}}{(b-a)^{2}}\right)
$$

Let $Z=(X, Y)$ and $f(Z)=\mathbf{1}_{g(X) \neq Y}$, we have

$$
\begin{aligned}
& R(g)=\mathbb{E}(f(Z))=\mathbb{E}_{(X, Y) \sim P}\left[\mathbf{1}_{g(X) \neq Y}\right] \\
& R_{n}(g)=\frac{1}{n} \sum_{i=1}^{n} f\left(Z_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{g\left(X_{i}\right) \neq Y_{i}} \\
\Rightarrow & \operatorname{Pr}\left(\left|R(g)-R_{n}(g)\right|>\epsilon\right) \leq 2 \exp \left(-2 n \epsilon^{2}\right)
\end{aligned}
$$

From Hoeffding's ineqaulity to a bound (3)

$$
\operatorname{Pr}\left(\left|R(g)-R_{n}(g)\right|>\epsilon\right) \leq 2 \exp \left(-2 n \epsilon^{2}\right)
$$

Let $\delta=2 \exp \left(-2 n \epsilon^{2}\right) \Rightarrow \epsilon=\sqrt{\log (2 / \delta) / 2 n}$.
\Rightarrow For training examples $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}$, and for a hypothesis g, for any $\delta \in(0,1)$ with probability at least $1-\delta$,

$$
R(g) \leq R_{n}(g)+\sqrt{\frac{\log \left(\frac{2}{\delta}\right)}{2 n}}
$$

Union bound over finite many hypotheses

Let consider a finite hypothesis set $\mathcal{G}=\left\{g_{1}, \cdots, g_{N}\right\}$. Union bound

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{N} A_{i}\right) \leq \sum_{i=1}^{N} \operatorname{Pr}\left(A_{i}\right)
$$

$$
\operatorname{Pr}\left(R(g)-R_{n}(g)>\epsilon\right) \leq 2 \exp \left(-2 n \epsilon^{2}\right) \Rightarrow
$$

$$
\operatorname{Pr}\left(\exists g \in \mathcal{G}: R(g)-R_{n}(g)>\epsilon\right) \leq \sum_{i=1}^{N} \operatorname{Pr}\left(R\left(g_{i}\right)-R_{n}\left(g_{i}\right)>\epsilon\right)
$$

$$
\leq 2 N \exp \left(-2 n \epsilon^{2}\right)
$$

Let $\delta=2 N \exp \left(-2 n \epsilon^{2}\right)$, we have, for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\forall g \in \mathcal{G}, R(g) \leq R_{n}(g)+\sqrt{\frac{\log N+\log \left(\frac{1}{\delta}\right)}{2 n}}
$$

Estimation Error bound (1)

Now we have

$$
\forall g \in \mathcal{G}, R(g) \leq R_{n}(g)+B_{1}(n, \mathcal{G})
$$

How do we get bound like

$$
R\left(g_{n}\right) \leq R\left(g^{*}\right)+B_{2}(n, \mathcal{G}) ?
$$

The latter is interesting because $R\left(g_{n}\right)-R\left(g^{*}\right)$ is the estimation error. In fact, if the former is obtained, we can get the latter using the former.

Estimation Error bound (2)

Derivation: By definition, we know $R_{n}\left(g^{*}\right) \geq R_{n}\left(g_{n}\right)$, so

$$
\begin{aligned}
& R\left(g_{n}\right)=R\left(g_{n}\right)-R\left(g^{*}\right)+R\left(g^{*}\right) \\
& \leq R_{n}\left(g^{*}\right)-R_{n}\left(g_{n}\right)+R\left(g_{n}\right)-R\left(g^{*}\right)+R\left(g^{*}\right) \\
& =\left(R_{n}\left(g^{*}\right)-R\left(g^{*}\right)\right)+R\left(g_{n}\right)-R_{n}\left(g_{n}\right)+R\left(g^{*}\right) \\
& \leq\left|R\left(g^{*}\right)-R_{n}\left(g^{*}\right)\right|+\left|R\left(g_{n}\right)-R_{n}\left(g_{n}\right)\right|+R\left(g^{*}\right) \\
& \leq 2 \sup _{g \in \mathcal{G}}\left|R(g)-R_{n}(g)\right|+R\left(g^{*}\right) \\
& \leq R\left(g^{*}\right)+2 B_{1}(n, \mathcal{G})
\end{aligned}
$$

For any $\delta \in(0,1)$, we have with probability at least $1-\delta$,

$$
\forall g \in \mathcal{G}, R(g) \leq R\left(g^{*}\right)+2 \sqrt{\frac{\log N+\log \left(\frac{1}{\delta}\right)}{2 n}}
$$

The bound we have shown only works for a finite hypothesis set $\mathcal{G}=\left\{g_{1}, \cdots, g_{N}\right\}$. Obviously $\sqrt{\frac{\log N+\log \left(\frac{1}{\delta}\right)}{2 n}}$ does not exist if $N=+\infty$. This is because we were counting the number of hypothesis when applying the union bound technique

$$
\begin{aligned}
\operatorname{Pr}\left(\exists g \in \mathcal{G}: R(g)-R_{n}(g)>\epsilon\right) & \leq \sum_{i=1}^{N} \operatorname{Pr}\left(R\left(g_{i}\right)-R_{n}\left(g_{i}\right)>\epsilon\right) \\
& \leq 2 N \exp \left(-2 n \epsilon^{2}\right)
\end{aligned}
$$

A simple fix (for countably infinite)

For any $g, \delta_{g}:=\operatorname{Pr}\left(R(g)-R_{n}(g)>\epsilon\right) \leq 2 \exp \left(-2 n \epsilon^{2}\right)$
$\Rightarrow \epsilon \leq \sqrt{\frac{\log \left(\frac{2}{\delta_{g}}\right)}{2 n}} \Rightarrow \operatorname{Pr}\left(\exists g \in \mathcal{G}: R(g)-R_{n}(g)>\epsilon\right) \leq \sum_{g \in \mathcal{S}} \delta_{g}$
If $\sum_{g \in 9} \delta_{g}<+\infty$, let $\delta=\sum_{g \in 9} \delta_{g}$.

$$
\operatorname{Pr}\left(\exists g \in \mathcal{G}: R(g)-R_{n}(g)>\sqrt{\left.\frac{\log \left(\frac{2}{\delta_{g}}\right)}{2 n}\right)} \leq \delta\right.
$$

Let $P(g):=\delta_{g} / \delta$, we have $\log \left(\frac{2}{\delta_{g}}\right)=\log \left(\frac{1}{P(g)}\right)+\log \left(\frac{2}{\delta}\right)$. Thus for any $\delta \in(0,1)$, with probability at least $1-\delta$,

$$
\forall g \in \mathcal{G}, R(g) \leq R\left(g^{*}\right)+2 \sqrt{\frac{\log \left(\frac{1}{P(g)}\right)+\log \left(\frac{2}{\delta}\right)}{2 n}}
$$

Hint for better remedy

Problem: a $g \in \mathcal{G}$, such that $P(g) \approx 0$, increases the bound tremendously (thus useless).

Another way: Though there are infinite many g in \mathcal{G}, there are only two possible outputs for a x, because $g(x) \in\{-1,+1\}$. What matters is the number of different prediction outputs $\left(\leq 2^{n}\right)$, not the cardinality of \mathcal{G}.

Next talk: This gives a hint for bounds and techniques for infinite hypothesis set, some of which (including VC dimension, VC bound) will be covered in the next talk.

