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Course Outline

Generalisation Bounds:
1 Basics (Today)
2 VC dimensions and bounds
3 Rademacher complexity and bounds
4 PAC Bayesian Bounds
5 · · ·
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History

Pionneered by Vapnik and Chervonenkis (1968,
1971), Sauer (1972), Shelah (1972) as
Vapnik-Chevonenkis-Sauer Lemma
Introduced in the west by Valiant (1984) under the
name of “probably approximately correct” (PAC)
Typical results state that with probability at least 1− δ
(probably), any classifier from hypothesis class which
has low training error will have low generalisation
error (approximately correct).
Learnability and the VC dimension by Blumer et al.
(1989), forms the basis of statistical learning theory
Generalisation bounds, (1) SRM, Shawe-Taylor,
Bartlett, Williamson, Anthony, (1998),
(2) Neural Networks, Bartlett (1998).
Soft margin bounds, Cristianini, Shawe-Taylor (2000),
Shawe-Taylor, Cristianini (2002)
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History

Apply Concentration inequalities, Boucheron et al.
(2000), Bousquet, Elisseff (2001)
Rademacher complexity, Koltchinskii, Panchenko
(2000), Kondor, Lafferty (2002), Bartlett, Boucheron,
Lugosi (2002), Bartlett, Mendelson (2002)
PAC-Bayesian Bound proposed by McAllester (1999),
improved by Seeger (2002) in Gaussian processes,
applied to SVMs by Langford, Shawe-Taylor (2002),
Tutorial by Langford (2005), greatly simplified proof
by Germain et al. (2009).
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Good books/tutorials

J Shawe-Taylor, N Cristianini’s book “Kernel Methods
for Pattern Analysis”, 2004
V Vapnik’s books “The nature of statistical learning
theory”, 1995 and “Statistical learning theory”, 1998
Bousquet et al.’s ML summer school tutorial
“Introduction to Statistical Learning Theory”, 2004
· · ·
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Risk
Given {(x1, y1), · · · , (xn, yn)} sampled from a unknown but
fixed distribution P(x , y), the goal is to learn a hypothesis
function g : X→ Y, for now assume Y = {−1,1}.

A typical g(x) = sign(〈φ(x),w〉), where sign(z) = 1 if
z > 0, sign(z) = −1 otherwise. Given a loss `(x , y , f ),
(True) Risk

R(w , `) = E(x ,y)∼P `(x , y ,w)

Empirical Risk

Rn(w , `) =
1
n

n∑
i=1

`(xi , yi ,w)

The hinge loss `(x , y ,w) = [1− y 〈φ(x),w〉]+.
The zero-one loss `(x , y ,w) = 1g(x)6=y .

6 / 18



Generalisation error

Generalisation error is the error rate over all possible
testing data from the distribution P, that is the risk w.r.t.
zero loss,

R(g) = E(x ,y)∼P [1g(x)6=y ]

(Zero-one) Empirical risk

Rn(g) =
1
n

n∑
i=1

1g(xi ) 6=yi ,

which is in fact the training error.
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Regularised ERM

Regularised empirical risk minimisation

gn = argmin
g∈G

Rn(g) + λΩ(g),

where Ω(g) is the regulariser, e.g. Ω(g) = ‖g‖2. G is the
hypothesis set. Unfortunately, above is not convex. It
turns out that one can optimise

wn = argmin
w∈W

Rn(w , `) + λΩ(w),

as long as ` is a surrogate loss of the zero-one loss.
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Approximation error and estimation error

G

gbayes
g* gn

gbayes = argmin
g

R(g)

g∗ = argmin
g∈G

R(g)

gn = argmin
g∈G

Rn(g)

R(gn)− R(gbayes) = [R(g∗)− R(gbayes)]︸ ︷︷ ︸
approximation error

+ [R(gn)− R(g∗)]︸ ︷︷ ︸
estimation error

Typical error bounds:

R(gn) ≤ Rn(gn) + B1(n,G) (1)
R(gn) ≤ R(g∗) + B2(n,G) (2)

R(gn) ≤ R(gbayes) + B3(n,G), (3)

where B(n,G) ≥ 0 (and usually B(n,G)→ 0 as n→ +∞).
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From Hoeffding’s ineqaulity to a bound (1)

How to get R(g) ≤ Rn(g) + B(n,G)?
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From Hoeffding’s ineqaulity to a bound (2)

Theorem (Hoeffding)
Let Z1, · · · ,Zn be n i.i.d. random variables with
f (Z ) ∈ [a,b]. Then for all ε > 0, we have

Pr
(∣∣∣1

n

n∑
i=1

f (Zi)− E[f (Z )]
∣∣∣ > ε

)
≤ 2 exp

(
− 2nε2

(b − a)2

)
Let Z = (X ,Y ) and f (Z ) = 1g(X)6=Y , we have

R(g) = E(f (Z )) = E(X ,Y )∼P [1g(X)6=Y ]

Rn(g) =
1
n

n∑
i=1

f (Zi) =
1
n

n∑
i=1

1g(Xi )6=Yi

⇒ Pr(|R(g)− Rn(g)| > ε) ≤ 2 exp (−2nε2)
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From Hoeffding’s ineqaulity to a bound (3)

Pr(|R(g)− Rn(g)| > ε) ≤ 2 exp (−2nε2)

Let δ = 2 exp (−2nε2)⇒ ε =
√

log(2/δ)/2n.

⇒ For training examples {(x1, y1), · · · , (xn, yn)}, and for a
hypothesis g, for any δ ∈ (0,1) with probability at least
1− δ,

R(g) ≤ Rn(g) +

√
log(2

δ
)

2n
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Union bound over finite many hypotheses
Let consider a finite hypothesis set G = {g1, · · · ,gN}.
Union bound

Pr(
N⋃

i=1

Ai) ≤
N∑

i=1

Pr(Ai)

Pr(R(g)− Rn(g) > ε) ≤ 2 exp (−2nε2)⇒

Pr(∃g ∈ G : R(g)− Rn(g) > ε) ≤
N∑

i=1

Pr(R(gi)− Rn(gi) > ε)

≤ 2N exp (−2nε2)

Let δ = 2N exp (−2nε2), we have, for any δ ∈ (0,1), with
probability at least 1− δ,

∀g ∈ G,R(g) ≤ Rn(g) +

√
log N + log(1

δ
)

2n
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Estimation Error bound (1)

Now we have

∀g ∈ G,R(g) ≤ Rn(g) + B1(n,G).

How do we get bound like

R(gn) ≤ R(g∗) + B2(n,G)?

The latter is interesting because R(gn)− R(g∗) is the
estimation error. In fact, if the former is obtained, we can
get the latter using the former.
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Estimation Error bound (2)
Derivation: By definition, we know Rn(g∗) ≥ Rn(gn), so

R(gn) = R(gn)− R(g∗) + R(g∗)
≤ Rn(g∗)− Rn(gn) + R(gn)− R(g∗) + R(g∗)
= (Rn(g∗)− R(g∗)) + R(gn)− Rn(gn) + R(g∗)
≤ |R(g∗)− Rn(g∗)|+ |R(gn)− Rn(gn)|+ R(g∗)
≤ 2 sup

g∈G
|R(g)− Rn(g)|+ R(g∗)

≤ R(g∗) + 2B1(n,G)

For any δ ∈ (0,1), we have with probability at least 1− δ,

∀g ∈ G,R(g) ≤ R(g∗) + 2

√
log N + log(1

δ
)

2n
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Problem

The bound we have shown only works for a finite

hypothesis set G = {g1, · · · ,gN}. Obviously
√

log N+log( 1
δ
)

2n
does not exist if N = +∞. This is because we were
counting the number of hypothesis when applying the
union bound technique

Pr(∃g ∈ G : R(g)− Rn(g) > ε) ≤
N∑

i=1

Pr(R(gi)− Rn(gi) > ε)

≤ 2N exp (−2nε2)
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A simple fix (for countably infinite)
For any g, δg := Pr

(
R(g)− Rn(g) > ε

)
≤ 2 exp (−2nε2)

⇒ ε ≤

√
log( 2

δg
)

2n
⇒ Pr(∃g ∈ G : R(g)− Rn(g) > ε) ≤

∑
g∈G

δg

If
∑

g∈G δg < +∞, let δ =
∑

g∈G δg.

Pr
(
∃g ∈ G : R(g)− Rn(g) >

√
log( 2

δg
)

2n

)
≤ δ

Let P(g) := δg/δ, we have log( 2
δg

) = log( 1
P(g)) + log(2

δ
).

Thus for any δ ∈ (0,1), with probability at least 1− δ,

∀g ∈ G,R(g) ≤ R(g∗) + 2

√
log( 1

P(g)) + log(2
δ
)

2n
17 / 18



Hint for better remedy

Problem: a g ∈ G, such that P(g) ≈ 0, increases the
bound tremendously (thus useless).

Another way: Though there are infinite many g in G, there
are only two possible outputs for a x , because
g(x) ∈ {−1,+1}. What matters is the number of different
prediction outputs (≤ 2n), not the cardinality of G.

Next talk: This gives a hint for bounds and techniques for
infinite hypothesis set, some of which (including VC
dimension, VC bound) will be covered in the next talk.
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