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Marginal and MAP Queries

Given joint distribution P(Y ,E ), where

Y , query random variable(s), unknown

E , evidence random variable(s), observed i.e. E = e.

Two types of queries:

Marginal queries (a.k.a. probability queries)
task is to compute P(Y |E = e)

MAP queries (a.k.a. most probable explanation )
task is to find y∗ = argmaxy∈Val(Y ) P(Y |E = e)
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Marginal and MAP Inference
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(a) Directed graph
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X3
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(b) Undirected graph

X1

X3

X2

fc2 fc3

fc1

(c) Factor graph

Marginal inference: P(xi ) =
∑
xj :j 6=i

P(x1, x2, x3)

MAP inference: (x∗1 , x
∗
2 , x
∗
3 ) = argmax

x1,x2,x3
P(x1, x2, x3)

Warning: x∗i 6= argmax
xi

P(xi ) in general
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Marginal and MAP Inference
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(g) Directed graph
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(h) Undirected graph
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fc2 fc3

fc1

(i) Factor graph

Extends to seeing the evidence E ,

Marginal inference: P(xi |E ) =
∑
xj :j 6=i

P(x1, x2, x3|E )

MAP inference: (x∗1 , x
∗
2 , x
∗
3 ) = argmax

x1,x2,x3
P(x1, x2, x3|E )
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Example of 4WD

P(¬g , a|s)? (i.e. P(G = ¬g ,A = a|S = s))

P(S)?

argmaxG ,A,S P(G ,A,S)?
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Marginals

When do we need marginals? Marginals are used to compute

query for probabilities like in W4D example.

normalisation constant
Z =

∑
xi
q(xi ) =

∑
xj
q(xj) ∀i , j = 1, . . . .

log loss in Conditional Random Fields (CRFs) is
− logP(x1, . . . , xn) = log(Z ) + . . . .
Here q(xi ) is a belief (not necessarily a probability) in
marginal inference.

expectations like EP(xi )[φ(xi )] and EP(xi ,xj )[φ(xi , xj)], where
ψ(xi ) = 〈φ(xi ),w〉 and ψ(xi , xj) = 〈φ(xi , xj),w〉
Gradient of CRFs risk contains above expectations.
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MAP

When do we need MAP?

find the most likely configuration for (xi )i∈V in testing.

find the most violated constraint generated by (x†i )i∈V in
training (i.e. learning), e.g. by cutting plane method (used in
SVM-Struct) or by Bundle method for Risk Minimisation (Teo
JMLR2010).
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How to infer?

How to infer by hand for Bayesian Networks? (previous lecture).

Problems: hand-tiring for many variables, and it’s only for
Bayesian Networks.

How to infer for other graphical models and how to do it in a
computer program?
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Variable elimination

Variable elimination: infer by eliminating variables (works for both
marginal and MAP inference)

P(A) =
∑
S,G

P(A,S ,G )

=
∑
S,G

P(S)P(A|S)P(G |S)

=
∑
S

P(S)P(A|S)(
∑
G

P(G |S)) =
∑
S

P(S)P(A|S)
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VE for marginal inference

Step by step:

1 sum over missing variables (marginalisation) for the full
distribution.

2 factorise the full distribution.

3 rearrange the sum operator to reduce the computation.

4 eliminate the variables.
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A

CB

Marginal inference P(A)?

P(A) =
∑
B,C

P(A, B, C)

=
∑
B,C

P(B)P(C)P(A|B, C)

=
∑
B

P(B)
∑
C

P(C)P(A|B, C)

=
∑
B

P(B)m1(A, B) (C eliminated)

= m2(A) (B eliminated)
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X3X2

X1

P(x1, x2, x3) =
1

Z
ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

ψ are given. Show example using the document camera.

P(x1) =
∑
x2,x3

1

Z
ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

=
1

Z

∑
x2,x3

ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

=
1

Z
ψ(x1)

∑
x2

(
ψ(x1, x2)ψ(x2)

)∑
x3

(
ψ(x1, x3)ψ(x3)

)

=
1

Z
ψ(x1)m2→1(x1)m3→1(x1)
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X3X2

X1

P(x2) =
∑
x1,x3

1

Z
ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

=
1

Z
ψ(x2)

∑
x1

(
ψ(x1, x2)ψ(x1)

∑
x3

[
ψ(x1, x3)ψ(x3)

])

=
1

Z
ψ(x2)

∑
x1

ψ(x1, x2)ψ(x1)m3→1(x1)

=
1

Z
ψ(x2)m1→2(x2)
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Variable elimination — factor graphical models

Works too.
Replace the ψ by factors f1, f2, ...

Qinfeng (Javen) Shi PGM 2 — Inference



What are MAP and Marginal Inferences?
Variable elimination

Message Passing

VE for marginal inference
VE for MAP inference

VE for MAP inference

MAP inference:

(x∗1 , x
∗
2 , x
∗
3 , ..., x

∗
n ) = argmax

x1,x2,x3,...,xn
P(x1, x2, x3, ..., xn)

Step by step:

1 max over the full distribution.

2 factorise the full distribution.

3 rearrange the max operator to reduce the computation.

4 eliminate the variables.
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Variable elimination — BayesNets

A

CB

MAP inference argmaxA,B,C P(A, B, C)?

max
A,B,C

P(A, B, C) = max
A,B,C

P(B)P(C)P(A|B, C)

= max
A

{
max
B

[
P(B) max

C

(
P(C)P(A|B, C)

)]}
= max

A

{
max
B

[
P(B)m1(A, B)

]}
(C eliminated, record its best assignment)

= max
A

m2(A) (B eliminated, record its best assignment, and A’s best assignment)

MAP solution?

argmax = A,B,C ’s best assignments.
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X2

X4

X1

X3

max
x1,x2,x3,x4

P(x1, x2, x3, x4)

= max
x1,x2,x3,x4

ψ(x1, x2)ψ(x2, x3)ψ(x2, x4)ψ(x1)ψ(x2)ψ(x3)ψ(x4)

= max
x1,x2

[
. . .max

x3

(
ψ(x2, x3)ψ(x3)

)
max
x4

(
ψ(x2, x4)ψ(x4)

)]
= max

x1

[
ψ(x1) max

x2

(
ψ(x2)ψ(x1, x2)m3→2(x2)m4→2(x2)

)]
= max

x1

(
ψ(x1)m2→1(x1)

)

argmax = recorded best assignments.
What if you didn’t (or don’t want to) record the assignments?
How to get them back?

Hint: x∗1 = argmaxx1

(
ψ(x1)m2→1(x1)

)
x∗2 ? x∗2 = argmaxx2

(
ψ(x2)ψ(x∗1 , x2)m3→2(x2)m4→2(x2)

)
x∗3 , x

∗
4 ? x∗3 = argmaxx3

(
ψ(x∗2 , x3)ψ(x3)

)
x∗4 = argmaxx4

(
ψ(x∗2 , x4)ψ(x4)

)
Answer: backtrack the best assignments (in the reversed the elimination order)
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P(x1, x2, x3, x4)

= max
x1,x2,x3,x4

ψ(x1, x2)ψ(x2, x3)ψ(x2, x4)ψ(x1)ψ(x2)ψ(x3)ψ(x4)

= max
x1,x2

[
. . .max

x3

(
ψ(x2, x3)ψ(x3)

)
max
x4

(
ψ(x2, x4)ψ(x4)

)]
= max

x1

[
ψ(x1) max

x2

(
ψ(x2)ψ(x1, x2)m3→2(x2)m4→2(x2)

)]
= max

x1

(
ψ(x1)m2→1(x1)

)

argmax = recorded best assignments.
What if you didn’t (or don’t want to) record the assignments?
How to get them back?

Hint: x∗1 = argmaxx1

(
ψ(x1)m2→1(x1)

)
x∗2 ? x∗2 = argmaxx2

(
ψ(x2)ψ(x∗1 , x2)m3→2(x2)m4→2(x2)

)
x∗3 , x

∗
4 ?

x∗3 = argmaxx3

(
ψ(x∗2 , x3)ψ(x3)

)
x∗4 = argmaxx4

(
ψ(x∗2 , x4)ψ(x4)

)
Answer: backtrack the best assignments (in the reversed the elimination order)
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

VE for marginal inference
VE for MAP inference

Variable elimination — factor graphical models

Works too.
Replace the ψ by factors f1, f2, ...
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Message Passing

Reuse the intermediate results (called messages) of VE
⇒ Message Passing:

VE for marginal inference ⇒ sum-product message passing

VE for MAP inference ⇒ max-product message passing
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Revisit VE for marginal

Assume P(x1, x2, x3) =
1

Z
ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

X3X2

X1

P(x1) =
1

Z
ψ(x1)

∑
x2

(
ψ(x1, x2)ψ(x2)

)∑
x3

(
ψ(x1, x3)ψ(x3)

)

=
1

Z
ψ(x1)m2→1(x1)m3→1(x1)

P(x2) =
1

Z
ψ(x2)

∑
x1

(
ψ(x1, x2)ψ(x1)

∑
x3

[
ψ(x1, x3)ψ(x3)

])

=
1

Z
ψ(x2)

∑
x1

ψ(x1, x2)ψ(x1)m3→1(x1)

=
1

Z
ψ(x2)m1→2(x2)

m3→1(x1) can be reused instead of computing twice.
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Sum-product

Can we compute all messages first, and then use them to compute
all marginal distributions?

Yes, it’s called sum-product.

In general,

P(xi ) =
1

Z

(
ψ(xi )

∏
j∈Ne(i)

mj→i (xi )
)

mj→i (xi ) =
∑
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)

Ne(i): neighbouring nodes of i (i.e. nodes that connect with i).
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Revisit VE for MAP

X2

X4

X1

X3

max
x1,x2,x3,x4

P(x1, x2, x3, x4)

= max
x1,x2,x3,x4

ψ(x1, x2)ψ(x2, x3)ψ(x2, x4)ψ(x1)ψ(x2)ψ(x3)ψ(x4)

= max
x1,x2

[
. . .max

x3

(
ψ(x2, x3)ψ(x3)

)
max
x4

(
ψ(x2, x4)ψ(x4)

)]
= max

x1

[
ψ(x1) max

x2

(
ψ(x2)ψ(x1, x2)m3→2(x2)m4→2(x2)

)]
= max

x1

(
ψ(x1)m2→1(x1)

)

x∗1 = argmaxx1

(
ψ(x1)m2→1(x1)

)
x∗2 = argmaxx2

(
ψ(x2)ψ(x∗1 , x2)m3→2(x2)m4→2(x2)

)
x∗3 = argmaxx3

(
ψ(x∗2 , x3)ψ(x3)

)
x∗4 = argmaxx4

(
ψ(x∗2 , x4)ψ(x4)

)
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Max-product

Variable elimination for MAP ⇒ Max-product:

x∗i = argmax
xi

(
ψ(xi )

∏
j∈Ne(i)

mj→i (xi )
)

mj→i (xi ) = max
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)

Ne(i): neighbouring nodes of i (i.e. nodes that connect with i).

Ne(j)\{i} = ∅ if j has only one edge connecting it. e.g. x1, x3, x4.
For such node j ,

mj→i (xi ) = max
xj

(
ψ(xj)ψ(xi , xj)

)
Easier computation!
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Max-product

Order matters: message m2→3(x3) requires m1→2(x2) and m4→2(x2).

X2

X4

X1

X3 X4X3

X2

X1

m1->2(X2)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m2->1(X1)

m2->3(X3) m2->4(X4)

Alternatively, leaves to root, and root to leaves.

X2

X4

X1

X3 X4X3

X2

X1

m2->1(X1)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m1->2(X2)

m2->3(X3) m2->4(X4)
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

Extension

To avoid over/under flow, often operate in the log space.

Max/sum-product is also known as Message Passing and Belief
Propagation (BP).

In graphs with loops, running BP for several iterations is known as
Loopy BP (neither convergence nor optimal guarantee in general).

Extend to Junction Tree Algorithm (exact, but expensive) and
Clusters-based BP.
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What are MAP and Marginal Inferences?
Variable elimination

Message Passing

Sum-product
Max-product

That’s all

Thanks!
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