ML Session 2, Part 2: Support Vector Machines

Javen Shi

29 Nov. 2018

Table of Contents I

(1) Refresh Optimisation

- Inner product, sign, and decision function
- Convexity
- Lagrange and Duality
(2) Classification Algorithms
- Perceptron
- Support Vector Machines

Refresh concepts

Inner product

For vectors $\mathbf{x}=\left[x^{1}, x^{2}, \cdots, x^{d}\right]^{\top}, \mathbf{w}=\left[w^{1}, w^{2}, \cdots, w^{d}\right]^{\top}$, inner product

$$
\langle\mathbf{x}, \mathbf{w}\rangle=\sum_{i=1}^{d} x^{i} w^{i}
$$

We write $\mathrm{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}$ to say they are d-dimensional real number vectors. We consider all vectors as column vectors by default. T is the transpose. We also use the matlab syntax that $\left[x^{1} ; x^{2} ; \cdots ; x^{d}\right]$ as column vector.

Refresh concepts

Inner product

For vectors $\mathbf{x}=\left[x^{1}, x^{2}, \cdots, x^{d}\right]^{\top}, \mathbf{w}=\left[w^{1}, w^{2}, \cdots, w^{d}\right]^{\top}$, inner product

$$
\langle\mathbf{x}, \mathbf{w}\rangle=\sum_{i=1}^{d} x^{i} w^{i} .
$$

We write $\mathrm{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}$ to say they are d-dimensional real number vectors. We consider all vectors as column vectors by default. T is the transpose. We also use the matlab syntax that $\left[x^{1} ; x^{2} ; \cdots ; x^{d}\right]$ as column vector.

Example: $a=[1 ; 3 ; 1.5], b=[2 ; 1 ; 1] .\langle a, b\rangle=$?

Refresh concepts

Inner product

For vectors $\mathbf{x}=\left[x^{1}, x^{2}, \cdots, x^{d}\right]^{\top}, \mathbf{w}=\left[w^{1}, w^{2}, \cdots, w^{d}\right]^{\top}$, inner product

$$
\langle\mathbf{x}, \mathbf{w}\rangle=\sum_{i=1}^{d} x^{i} w^{i} .
$$

We write $\mathrm{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}$ to say they are d-dimensional real number vectors. We consider all vectors as column vectors by default. T is the transpose. We also use the matlab syntax that $\left[x^{1} ; x^{2} ; \cdots ; x^{d}\right]$ as column vector.

Example: $a=[1 ; 3 ; 1.5], b=[2 ; 1 ; 1] .\langle a, b\rangle=$?
$=1 \times 2+3 \times 1+1.5 \times 1=6.5$

Refresh Optimisation Classification Algorithms

Inner product, sign, and decision function Convexity
Lagrange and Duality

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$
\operatorname{sign}(a)= \begin{cases}1 & \text { if } a>0 \\ -1 & \text { otherwise }\end{cases}
$$

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$
\operatorname{sign}(a)= \begin{cases}1 & \text { if } a>0 \\ -1 & \text { otherwise }\end{cases}
$$

Examples: $\operatorname{sign}(20)=?, \operatorname{sign}(-5)=?, \operatorname{sign}(0)=?$.

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$
\operatorname{sign}(a)= \begin{cases}1 & \text { if } a>0 \\ -1 & \text { otherwise }\end{cases}
$$

Examples: $\operatorname{sign}(20)=?, \operatorname{sign}(-5)=?, \operatorname{sign}(0)=$?.
$\operatorname{sign}(20)=1, \operatorname{sign}(-5)=-1, \operatorname{sign}(0)=-1$.

Decision functions

Typical decision functions for classification ${ }^{1}$:
Binary-class $g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)$.

$$
\text { Multi-class } g(\mathbf{x} ; \mathbf{w})=\underset{y \in \mathcal{y}}{\operatorname{argmax}}\left(\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle\right) .
$$

where $\mathbf{w}, \mathbf{w}_{y}$ are the parameters, and $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{w}_{y} \in \mathbb{R}^{d}$.
${ }^{1}$ for $b \in \mathbb{R}$, more general form $\langle\mathbf{x}, \mathbf{w}\rangle+b$ can be rewritten as $\langle[\mathbf{x} ; 1],[\mathbf{w} ; b]\rangle$

Decision functions

Typical decision functions for classification ${ }^{1}$:

$$
\text { Binary-class } g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)
$$

Multi-class $g(\mathbf{x} ; \mathbf{w})=\operatorname{argmax}\left(\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle\right)$. $y \in y$
where $\mathbf{w}, \mathbf{w}_{y}$ are the parameters, and $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{w}_{y} \in \mathbb{R}^{d}$. Example 1: $\mathbf{x}=[1 ; 3.5], \mathbf{w}=[2 ;-1] . g(\mathbf{x} ; \mathbf{w})=$?
${ }^{1}$ for $b \in \mathbb{R}$, more general form $\langle\mathbf{x}, \mathbf{w}\rangle+b$ can be rewritten as $\langle[\mathbf{x} ; 1],[\mathbf{w} ; b]\rangle$

Decision functions

Typical decision functions for classification ${ }^{1}$:

$$
\text { Binary-class } g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)
$$

Multi-class $g(\mathbf{x} ; \mathbf{w})=\operatorname{argmax}\left(\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle\right)$. $y \in y$
where $\mathbf{w}, \mathbf{w}_{y}$ are the parameters, and $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{w}_{y} \in \mathbb{R}^{d}$.
Example 1: $\mathbf{x}=[1 ; 3.5], \mathbf{w}=[2 ;-1] . g(\mathbf{x} ; \mathbf{w})=$?
$=\operatorname{sign}(1 \times 2+3.5 \times(-1))=\operatorname{sign}(-1.5)=-1$.
${ }^{1}$ for $b \in \mathbb{R}$, more general form $\langle\mathbf{x}, \mathbf{w}\rangle+b$ can be rewritten as $\langle[\mathbf{x} ; 1],[\mathbf{w} ; b]\rangle$

Decision functions

Typical decision functions for classification ${ }^{1}$:

$$
\text { Binary-class } g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)
$$

$$
\text { Multi-class } g(\mathbf{x} ; \mathbf{w})=\underset{y \in \mathcal{y}}{\operatorname{argmax}}\left(\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle\right) \text {. }
$$

where $\mathbf{w}, \mathbf{w}_{y}$ are the parameters, and $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{w}_{y} \in \mathbb{R}^{d}$.
Example 1: $\mathbf{x}=[1 ; 3.5], \mathbf{w}=[2 ;-1] . g(\mathbf{x} ; \mathbf{w})=$?
$=\operatorname{sign}(1 \times 2+3.5 \times(-1))=\operatorname{sign}(-1.5)=-1$.
Example 2:
$\mathbf{x}=[1 ; 3.5], \mathbf{w}_{1}=[2 ;-1], \mathbf{w}_{2}=[1 ; 2], \mathbf{w}_{3}=[3 ; 2], y=1,2,3$. $g(\mathbf{x} ; \mathbf{w})=$?
${ }^{1}$ for $b \in \mathbb{R}$, more general form $\langle\mathbf{x}, \mathbf{w}\rangle+b$ can be rewritten as $\langle[\mathbf{x} ; 1],[\mathbf{w} ; b]\rangle$

Decision functions

Typical decision functions for classification ${ }^{1}$:

$$
\text { Binary-class } g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)
$$

$$
\text { Multi-class } g(\mathbf{x} ; \mathbf{w})=\underset{y \in \mathcal{y}}{\operatorname{argmax}}\left(\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle\right) \text {. }
$$

where $\mathbf{w}, \mathbf{w}_{y}$ are the parameters, and $\mathbf{x} \in \mathbb{R}^{d}, \mathbf{w} \in \mathbb{R}^{d}, \mathbf{w}_{y} \in \mathbb{R}^{d}$.
Example 1: $\mathbf{x}=[1 ; 3.5], \mathbf{w}=[2 ;-1] . g(\mathbf{x} ; \mathbf{w})=$?
$=\operatorname{sign}(1 \times 2+3.5 \times(-1))=\operatorname{sign}(-1.5)=-1$.
Example 2:
$\mathbf{x}=[1 ; 3.5], \mathbf{w}_{1}=[2 ;-1], \mathbf{w}_{2}=[1 ; 2], \mathbf{w}_{3}=[3 ; 2], y=1,2,3$.
$g(\mathbf{x} ; \mathbf{w})=$? $\left\langle\mathbf{x}, \mathbf{w}_{1}\right\rangle=-1.5,\left\langle\mathbf{x}, \mathbf{w}_{2}\right\rangle=8,\left\langle\mathbf{x}, \mathbf{w}_{3}\right\rangle=10$. Thus
$g(\mathbf{x} ; \mathbf{w})=\operatorname{argmax}_{\mathbf{y} \in\{1,2,3\}}\left\langle\mathbf{x}, \mathbf{w}_{y}\right\rangle=3$.
${ }^{1}$ for $b \in \mathbb{R}$, more general form $\langle\mathbf{x}, \mathbf{w}\rangle+b$ can be rewritten as $\langle[\mathbf{x} ; 1],[\mathbf{w} ; b]\rangle$

Convexity

- Convexity for a function
- Convexity for a set

Illustrate using the whiteboard or the document camera.

Lagrange multipliers and function

To solve a convex minimisation problem,

$$
\min _{\mathbf{x}} f_{0}(\mathbf{x})
$$

$$
\text { s.t. } \quad f_{i}(\mathbf{x}) \leq 0, i=1, \cdots, m, \quad \text { (Primal) }
$$

where f_{0} is convex, and the feasible set (let's call it A) is convex (equivalent to all f_{0}, f_{i} are convex). \mathbf{x} are called primal variables.
Lagrange function:

$$
L(\mathbf{x}, \alpha)=f_{0}(\mathbf{x})+\sum_{i=1}^{m} \alpha_{i} f_{i}(\mathbf{x})
$$

where $\alpha_{i} \geq 0$ are called Lagrange multipliers also known as (a.k.a) dual variables.

Dual problem

$L(\mathbf{x}, \alpha)$ produces the primal objective:

$$
f_{0}(\mathbf{x})=\max _{\alpha \geq 0} L(\mathbf{x}, \alpha) .
$$

$L(\mathbf{x}, \alpha)$ produces the dual objective:

$$
D(\alpha)=\min _{\mathbf{x} \in A} L(\mathbf{x}, \alpha) .
$$

The following problem is called the (Lagrangian) dual problem,

$$
\begin{array}{ll}
& \max _{\alpha} D(\alpha) \\
\text { s.t. } & \alpha_{i} \geq 0, i=1, \cdots, m . \tag{Dual}
\end{array}
$$

Primal and Dual relation

In general:

$$
\min _{\mathbf{x} \in A} f_{0}(\mathbf{x})=\min _{\mathbf{x} \in A}\left(\max _{\alpha \geq 0} L(\mathbf{x}, \alpha)\right) \geq \max _{\alpha \geq 0}\left(\min _{\mathbf{x} \in A} L(\mathbf{x}, \alpha)\right)=\max _{\alpha \geq 0} D(\alpha) .
$$

Since $L(\mathbf{x}, \alpha)$ is convex w.r.t. \mathbf{x}, and concave w.r.t. α, we have

$$
\min _{\mathbf{x} \in A} f_{0}(\mathbf{x})=\min _{\mathbf{x} \in A}\left(\max _{\alpha \geq 0} L(\mathbf{x}, \alpha)\right)=\max _{\alpha \geq 0}\left(\min _{\mathbf{x} \in A} L(\mathbf{x}, \alpha)\right)=\max _{\alpha \geq 0} D(\alpha) .
$$

To solve the primal $\min _{\mathbf{x} \in A} f_{0}(\mathbf{x})$, one can solve the dual $\max _{\alpha \geq 0} D(\alpha)$.

Duality

The following always holds
$D(\alpha) \leq f_{0}(\mathbf{x}), \forall \mathbf{x}, \alpha$ (so called weak duality)
Sometimes (not always) below holds $\max _{\alpha} D(\alpha)=\min _{\mathbf{x}} f_{0}(\mathbf{x})$ (so called strong duality)
Strong duality holds for SVM.

How to do it?

Given a problem, how to get its dual form?
(1) transform the problem to a standard form
(2) write down the Lagrange function
(3) use optimality conditions to get equations

- 1st order condition
- complementarity conditions
(9) remove the primal variables.

Examples.

Perceptron Algorithm

Assume $g(\mathbf{x} ; \mathbf{w})=\operatorname{sign}(\langle\mathbf{x}, \mathbf{w}\rangle)$, where $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{d}, y \in\{-1,1\}$.

Input: training data $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$, step size η, \#iter T
Initialise $w_{1}=\mathbf{0}$
for $t=1$ to T do
end for

$$
\begin{equation*}
\mathbf{w}_{t+1}=\mathbf{w}_{t}+\eta \sum_{i=1}^{n}\left(y_{i} \mathbf{x}_{i} \mathbf{1}_{\left\{y_{i}\left(\mathbf{x}_{i}, \mathbf{w}_{t}\right\rangle<0\right\}}\right) \tag{1}
\end{equation*}
$$

Output: $\mathbf{w}^{*}=\mathbf{w}_{T}$

The class of \mathbf{x} is predicted via

$$
y^{*}=\operatorname{sign}\left(\left\langle\mathbf{x}, \mathbf{w}^{*}\right\rangle\right)
$$

View it in ERM

$$
\min _{\mathbf{w}, \xi} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}, \quad \text { s.t. } \quad y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle \geq-\xi_{i}, \xi_{i} \geq 0
$$

whose unconstrained form is

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle\right\} \Leftrightarrow \min _{\mathbf{w}} R_{n}\left(\mathbf{w}, \ell_{\text {pern }}\right)
$$

with $\operatorname{Loss} \ell_{\text {pern }}(\mathbf{x}, y, \mathbf{w})=\max \{0,-y\langle\mathbf{x}, \mathbf{w}\rangle\}$ and Empirical Risk $R_{n}\left(\mathbf{w}, \ell_{\text {pern }}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell_{\text {pern }}\left(\mathbf{x}_{i}, y_{i}, \mathbf{w}\right)$.

$$
\begin{gathered}
\text { Sub-gradient } \frac{\partial R_{n}\left(\mathbf{w}, \ell_{\text {pern }}\right)}{\partial \mathbf{w}}=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \mathbf{x}_{i} \mathbf{1}_{\left\{y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}_{t}\right\rangle\right)<0\right\}}\right) \\
\mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta^{\prime} \frac{\partial R_{n}\left(\mathbf{w}, \ell_{\text {pern }}\right)}{\partial \mathbf{w}}=\mathbf{w}_{t}+\eta^{\prime} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \mathbf{x}_{i} \mathbf{1}_{\left\{y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}_{t}\right\rangle\right)<0\right\}}\right)
\end{gathered}
$$

Letting $\eta=\eta^{\prime} \frac{1}{n}$ recovers the equation (1).

Max Margin

Max Margin Formulation

One form of soft margin binary Support Vector Machines (SVMs) (a primal form) is

$$
\begin{align*}
& \min _{\mathbf{w}, b, \gamma, \xi}-\gamma+C \sum_{i=1}^{n} \xi_{i} \tag{2}\\
& \text { s.t. } y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq \gamma-\xi_{i}, \xi_{i} \geq 0,\|\mathbf{w}\|^{2}=1
\end{align*}
$$

For a testing \mathbf{x}^{\prime}, given the learnt \mathbf{w}^{*}, b^{*}, the predicted label $y^{*}=g\left(\mathbf{x}^{\prime} ; \mathbf{w}^{*}\right)=\operatorname{sign}\left(\left\langle\mathbf{x}^{\prime}, \mathbf{w}^{*}\right\rangle+b^{*}\right)$.

Primal

A more popular version is (still a primal form)

$$
\begin{aligned}
& \min _{\mathbf{w}, b, \xi} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, i=1, \cdots, n,
\end{aligned}
$$

This is equivalent to the previous form and $\gamma=1 /\|\mathbf{w}\|$.
View in in ERM hinge loss $\ell_{H}(\mathbf{x}, y, \mathbf{w})=\max \{0,1-y(\langle\mathbf{x}, \mathbf{w}\rangle+b)\}$, and $\Omega(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|^{2}$ with a proper λ.

It is often solved by using Lagrange multipliers and duality.

Lagrangian function

$$
\begin{aligned}
L(\mathbf{w}, b, \xi, \alpha, \beta) & =\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
& +\sum_{i=1}^{n} \alpha_{i}\left[1-\xi_{i}-y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)\right]+\sum_{i=1}^{n} \beta_{i}\left(-\xi_{i}\right)
\end{aligned}
$$

Optimise Lagrangian function - 1st order condition

To get $\inf _{\mathbf{w}, b, \xi}\{L(\mathbf{w}, b, \xi, \alpha, \beta)\}$, by 1 st order condition

$$
\begin{gather*}
\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}^{*}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \tag{3}\\
\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial \xi_{i}}=0 \Rightarrow C-\alpha_{i}-\beta_{i}=0 \tag{4}\\
\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial b}=0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{5}
\end{gather*}
$$

Optimise Lagrangian function - Complementarity conditions

Complementarity conditions

$$
\begin{align*}
\alpha_{i}\left[1-\xi_{i}-y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)\right] & =0, \forall i \tag{6}\\
\beta_{i} \xi_{i} & =0, \forall i \tag{7}
\end{align*}
$$

Dual

$$
\begin{aligned}
& L\left(\mathbf{w}^{*}, b^{*}, \xi^{*}, \alpha, \beta\right) \\
& =\frac{1}{2}\left\langle\mathbf{w}^{*}, \mathbf{w}^{*}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}^{*}\right\rangle \\
& +\sum_{i=1}^{n} \xi_{i}^{*}\left(C-\alpha_{i}-\beta_{i}\right)+b\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right) \\
& =\frac{1}{2}\left\langle\mathbf{w}^{*}, \mathbf{w}^{*}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\mathbf{x}_{i}, \mathbf{w}^{*}\right\rangle \quad \text { via eq(4) and eq(5) } \\
& =\frac{1}{2} \sum_{i, j}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+\sum_{i=1}^{n} \alpha_{i}-\sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \text { via eq (3) } \\
& =\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle
\end{aligned}
$$

Dual

$\max _{\alpha} \inf _{\mathbf{w}, b, \xi}\{L(\mathbf{w}, b, \xi, \alpha, \beta)\}$ gives the dual form:

$$
\begin{array}{ll}
& \max _{\alpha} \\
\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, i=1, \cdots, n, \quad(\text { via eq(4)) } \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

Let α^{*} be the solution.

From dual to primal variables

How to compute \mathbf{w}^{*}, b^{*} from α^{*} ?
Via eq(3), we have

$$
\begin{equation*}
\mathbf{w}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \mathbf{x}_{i} \tag{8}
\end{equation*}
$$

Via comp condition eq(6), we have $\alpha_{i}\left[1-\xi_{i}-y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)\right]=0, \forall i$. When $\alpha_{i}>0$, we know $1-\xi_{i}-y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)=0$. It will be great if $\xi_{i}=0$ too. When will it happen? $\beta_{i}>0 \Rightarrow \xi_{i}=0$ because of comp condition eq(7). Since $C-\alpha_{i}-\beta_{i}=0(4), \beta_{i}>0$ means $\alpha<C$. For any i, s.t. $0<\alpha_{i}<C, 1-y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)=0$, so (multiple y_{i} on both sides, and the fact that $y_{i}^{2}=1$)

$$
\begin{equation*}
b^{*}=y_{i}-\left\langle\mathbf{x}_{i}, \mathbf{w}^{*}\right\rangle \tag{9}
\end{equation*}
$$

Numerically wiser to take the average over all such training points (Burges tutorial).

Support Vectors

$$
y^{*}=\operatorname{sign}\left(\left\langle x, \mathbf{w}^{*}\right\rangle+b^{*}\right)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i}^{*} y_{i}\left\langle\mathbf{x}_{i}, x\right\rangle+b^{*}\right) .
$$

It turns out many $\alpha_{i}^{*}=0$. Those \mathbf{x}_{j} with $\alpha_{j}^{*}>0$ are called support vectors. Let $S=\left\{j: \alpha_{j}^{*}>0\right\}$

$$
y^{*}=\operatorname{sign}\left(\sum_{j \in S} \alpha_{j}^{*} y_{j}\left\langle\mathbf{x}_{j}, \mathbf{x}\right\rangle+b^{*}\right)
$$

Note now y can be predicted without explicitly expressing w as long as the support vectors are stored.

Support Vectors

Two types of SVs:

- Margin SVs: $0<\alpha_{i}<C$ ($\xi_{i}=0$, on the dash lines $)$
- Non-margin SVs: $\alpha_{i}=C\left(\xi_{i}>0\right.$, thus violating the margin. More specifically, when $1>\xi_{i}>0$, correctly classified; when $\xi_{i}>1$, it's mis-classified; when $\xi_{i}=1$, on the decision boundary)

Dual

All derivation holds if one replaces \mathbf{x}_{j} with $\phi\left(\mathbf{x}_{j}\right)$ and let kernel function $\kappa\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle$. This gives

$$
\begin{aligned}
& \quad \max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
& \text { s.t. } \quad 0 \leq \alpha_{i} \leq C, i=1, \cdots, n \\
& \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
& y^{*}=\operatorname{sign}\left[\sum_{j \in S} \alpha_{j}^{*} y_{j} \kappa\left(\mathbf{x}_{j}, \mathbf{x}\right)+b^{*}\right]
\end{aligned}
$$

This leads to non-linear SVM and more generally kernel methods (will be covered in later lectures).

Theoretical justification

An example of generalisation bounds is below (just to give you an intuition, no need to fully understand it for now).

Theorem (VC bound)

Denote h as the VC dimension, for all $n \geq h$, for any $\delta \in(0,1)$, with probability at least $1-\delta, \forall g \in \mathcal{G}$

$$
R(g) \leq R_{n}(g)+2 \sqrt{2 \frac{h \log \frac{2 e n}{h}+\log \left(\frac{2}{\delta}\right)}{n}} .
$$

Margin $\gamma=1 /\|\mathbf{w}\|, h \leq \min \left\{D,\left\lceil\frac{4 R^{2}}{\gamma^{2}}\right\rceil\right\}$, where the radius $R^{2}=\max _{i=1}^{n}\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{i}\right)\right\rangle$ (assuming data are already centered)

Theoretical justification

Other tighter bounds such as Rademacher bounds, PAC-Bayes bounds etc..

That's all

Thanks!

