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Refresh concepts

Inner product

For vectors x = [x1, x2, · · · , xd ]>,w = [w1,w2, · · · ,wd ]>, inner product

〈x,w〉 =
d∑

i=1

x iw i .

We write x ∈ Rd ,w ∈ Rd to say they are d-dimensional real number
vectors. We consider all vectors as column vectors by default. > is the
transpose. We also use the matlab syntax that [x1;x2; · · · ;xd ] as column
vector.

Example: a = [1; 3; 1.5], b = [2; 1; 1]. 〈a, b〉 =?

= 1× 2 + 3× 1 + 1.5× 1 = 6.5
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Refresh concepts

Sign function

For any scalar a ∈ R,

sign(a) =

{
1 if a > 0
−1 otherwise

Examples: sign(20) =?, sign(−5) =?, sign(0) =?.
sign(20) = 1, sign(−5) = −1, sign(0) = −1.
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Decision functions

Typical decision functions for classification 1 :

Binary-class g(x; w) = sign(〈x,w〉).

Multi-class g(x; w) = argmax
y∈Y

(〈x,wy 〉).

where w,wy are the parameters, and x ∈ Rd ,w ∈ Rd ,wy ∈ Rd .

Example 1: x = [1; 3.5],w = [2;−1]. g(x; w) =?
= sign(1× 2 + 3.5× (−1)) = sign(−1.5) = −1.
Example 2:
x = [1; 3.5],w1 = [2;−1],w2 = [1; 2],w3 = [3; 2], y = 1, 2, 3.
g(x; w) =? 〈x,w1〉 = −1.5, 〈x,w2〉 = 8, 〈x,w3〉 = 10. Thus
g(x; w) = argmaxy∈{1,2,3} 〈x,wy 〉 = 3.

1for b ∈ R, more general form 〈x,w〉+ b can be rewritten as 〈[x; 1], [w; b]〉
Javen Shi ML Session 2, Part 2: Support Vector Machines



Refresh Optimisation
Classification Algorithms

Inner product, sign, and decision function
Convexity
Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class g(x; w) = sign(〈x,w〉).

Multi-class g(x; w) = argmax
y∈Y

(〈x,wy 〉).

where w,wy are the parameters, and x ∈ Rd ,w ∈ Rd ,wy ∈ Rd .
Example 1: x = [1; 3.5],w = [2;−1]. g(x; w) =?

= sign(1× 2 + 3.5× (−1)) = sign(−1.5) = −1.
Example 2:
x = [1; 3.5],w1 = [2;−1],w2 = [1; 2],w3 = [3; 2], y = 1, 2, 3.
g(x; w) =? 〈x,w1〉 = −1.5, 〈x,w2〉 = 8, 〈x,w3〉 = 10. Thus
g(x; w) = argmaxy∈{1,2,3} 〈x,wy 〉 = 3.

1for b ∈ R, more general form 〈x,w〉+ b can be rewritten as 〈[x; 1], [w; b]〉
Javen Shi ML Session 2, Part 2: Support Vector Machines



Refresh Optimisation
Classification Algorithms

Inner product, sign, and decision function
Convexity
Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class g(x; w) = sign(〈x,w〉).

Multi-class g(x; w) = argmax
y∈Y

(〈x,wy 〉).

where w,wy are the parameters, and x ∈ Rd ,w ∈ Rd ,wy ∈ Rd .
Example 1: x = [1; 3.5],w = [2;−1]. g(x; w) =?
= sign(1× 2 + 3.5× (−1)) = sign(−1.5) = −1.

Example 2:
x = [1; 3.5],w1 = [2;−1],w2 = [1; 2],w3 = [3; 2], y = 1, 2, 3.
g(x; w) =? 〈x,w1〉 = −1.5, 〈x,w2〉 = 8, 〈x,w3〉 = 10. Thus
g(x; w) = argmaxy∈{1,2,3} 〈x,wy 〉 = 3.

1for b ∈ R, more general form 〈x,w〉+ b can be rewritten as 〈[x; 1], [w; b]〉
Javen Shi ML Session 2, Part 2: Support Vector Machines



Refresh Optimisation
Classification Algorithms

Inner product, sign, and decision function
Convexity
Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class g(x; w) = sign(〈x,w〉).

Multi-class g(x; w) = argmax
y∈Y

(〈x,wy 〉).

where w,wy are the parameters, and x ∈ Rd ,w ∈ Rd ,wy ∈ Rd .
Example 1: x = [1; 3.5],w = [2;−1]. g(x; w) =?
= sign(1× 2 + 3.5× (−1)) = sign(−1.5) = −1.
Example 2:
x = [1; 3.5],w1 = [2;−1],w2 = [1; 2],w3 = [3; 2], y = 1, 2, 3.
g(x; w) =?

〈x,w1〉 = −1.5, 〈x,w2〉 = 8, 〈x,w3〉 = 10. Thus
g(x; w) = argmaxy∈{1,2,3} 〈x,wy 〉 = 3.

1for b ∈ R, more general form 〈x,w〉+ b can be rewritten as 〈[x; 1], [w; b]〉
Javen Shi ML Session 2, Part 2: Support Vector Machines



Refresh Optimisation
Classification Algorithms

Inner product, sign, and decision function
Convexity
Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class g(x; w) = sign(〈x,w〉).

Multi-class g(x; w) = argmax
y∈Y

(〈x,wy 〉).

where w,wy are the parameters, and x ∈ Rd ,w ∈ Rd ,wy ∈ Rd .
Example 1: x = [1; 3.5],w = [2;−1]. g(x; w) =?
= sign(1× 2 + 3.5× (−1)) = sign(−1.5) = −1.
Example 2:
x = [1; 3.5],w1 = [2;−1],w2 = [1; 2],w3 = [3; 2], y = 1, 2, 3.
g(x; w) =? 〈x,w1〉 = −1.5, 〈x,w2〉 = 8, 〈x,w3〉 = 10. Thus
g(x; w) = argmaxy∈{1,2,3} 〈x,wy 〉 = 3.

1for b ∈ R, more general form 〈x,w〉+ b can be rewritten as 〈[x; 1], [w; b]〉
Javen Shi ML Session 2, Part 2: Support Vector Machines



Refresh Optimisation
Classification Algorithms

Inner product, sign, and decision function
Convexity
Lagrange and Duality

Convexity

Convexity for a function

Convexity for a set

Illustrate using the whiteboard or the document camera.
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Lagrange multipliers and function

To solve a convex minimisation problem,

min
x

f0(x)

s.t. fi (x) ≤ 0, i = 1, · · · ,m, (Primal)

where f0 is convex, and the feasible set (let’s call it A) is convex
(equivalent to all f0, fi are convex). x are called primal variables.

Lagrange function:

L(x, α) = f0(x) +
m∑
i=1

αi fi (x),

where αi ≥ 0 are called Lagrange multipliers also known as (a.k.a)
dual variables.
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Dual problem

L(x, α) produces the primal objective:

f0(x) = max
α≥0

L(x, α).

L(x, α) produces the dual objective:

D(α) = min
x∈A

L(x, α).

The following problem is called the (Lagrangian) dual problem,

max
α

D(α)

s.t. αi ≥ 0, i = 1, · · · ,m. (Dual)
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Primal and Dual relation

In general:

min
x∈A

f0(x) = min
x∈A

(max
α≥0

L(x, α))≥max
α≥0

(min
x∈A

L(x, α)) = max
α≥0

D(α).

Since L(x, α) is convex w.r.t. x, and concave w.r.t. α, we have

min
x∈A

f0(x) = min
x∈A

(max
α≥0

L(x, α))= max
α≥0

(min
x∈A

L(x, α)) = max
α≥0

D(α).

To solve the primal minx∈A f0(x), one can solve the dual
maxα≥0 D(α).
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Duality

The following always holds
D(α) ≤ f0(x), ∀ x, α (so called weak duality)

Sometimes (not always) below holds
maxαD(α) = minx f0(x) (so called strong duality)
Strong duality holds for SVM.
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How to do it?

Given a problem, how to get its dual form?

1 transform the problem to a standard form

2 write down the Lagrange function
3 use optimality conditions to get equations

1st order condition
complementarity conditions

4 remove the primal variables.

Examples.
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Perceptron Algorithm

Assume g(x; w) = sign(〈x,w〉), where x,w ∈ Rd , y ∈ {−1, 1}.

Input: training data {(xi , yi )}ni=1, step size η, #iter T
Initialise w1 = 0
for t = 1 to T do

wt+1 = wt +η
n∑

i=1

(yi xi 1{yi 〈xi ,wt〉<0}) (1)

end for
Output: w∗ = wT

The class of x is predicted via

y∗ = sign(〈x,w∗〉)
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View it in ERM

min
w,ξ

1

n

n∑
i=1

ξi , s.t. yi 〈xi ,w〉 ≥ −ξi , ξi ≥ 0

whose unconstrained form is

min
w

1

n

n∑
i=1

max{0,−yi 〈xi ,w〉} ⇔ min
w

Rn(w, `pern)

with Loss `pern(x, y ,w) = max{0,−y 〈x,w〉} and
Empirical Risk Rn(w, `pern) = 1

n

∑n
i=1 `pern(xi , yi ,w).

Sub-gradient
∂Rn(w, `pern)

∂w
= −1

n

n∑
i=1

(yi xi 1{yi (〈xi ,wt〉)<0}).

wt+1 = wt −η′
∂Rn(w, `pern)

∂w
= wt +η′

1

n

n∑
i=1

(yi xi 1{yi (〈xi ,wt〉)<0})

Letting η = η′ 1n recovers the equation (1).
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Max Margin

Picture courtesy of wikipedia
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Max Margin Formulation

One form of soft margin binary Support Vector Machines (SVMs)
(a primal form) is

min
w,b,γ,ξ

−γ + C
n∑

i=1

ξi (2)

s.t. yi (〈xi ,w〉+ b) ≥ γ − ξi , ξi ≥ 0, ‖w ‖2 = 1

For a testing x′, given the learnt w∗, b∗, the predicted label

y∗ = g(x′; w∗) = sign(〈x′,w∗〉+ b∗).
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Primal

A more popular version is (still a primal form)

min
w,b,ξ

1

2
‖w ‖2 + C

n∑
i=1

ξi ,

s.t. yi (〈xi ,w〉+ b) ≥ 1− ξi , ξi ≥ 0, i = 1, · · · , n,

This is equivalent to the previous form and γ = 1/‖w ‖.

View in in ERM hinge loss `H(x, y ,w) = max{0, 1− y(〈x,w〉+b)},
and Ω(w) = 1

2‖w ‖2 with a proper λ.

It is often solved by using Lagrange multipliers and duality.
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Lagrangian function

L(w, b, ξ, α, β) =
1

2
‖w ‖2 + C

n∑
i=1

ξi

+
n∑

i=1

αi [1− ξi − yi (〈xi ,w〉+ b)] +
n∑

i=1

βi (−ξi )
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Optimise Lagrangian function — 1st order condition

To get infw,b,ξ{L(w, b, ξ, α, β)}, by 1st order condition

∂L(w, b, ξ, α, β)

∂w
= 0⇒ w∗−

n∑
i=1

αiyixi = 0 (3)

∂L(w, b, ξ, α, β)

∂ξi
= 0⇒ C − αi − βi = 0 (4)

∂L(w, b, ξ, α, β)

∂b
= 0⇒

n∑
i=1

αiyi = 0 (5)
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Optimise Lagrangian function — Complementarity
conditions

Complementarity conditions

αi [1− ξi − yi (〈xi ,w〉+ b)] = 0,∀i (6)

βiξi = 0,∀i (7)
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Dual

L(w∗, b∗, ξ∗, α, β)

=
1

2
〈w∗,w∗〉+

n∑
i=1

αi −
n∑

i=1

αiyi 〈xi ,w∗〉

+
n∑

i=1

ξ∗i (C − αi − βi ) + b(
n∑

i=1

αiyi )

=
1

2
〈w∗,w∗〉+

n∑
i=1

αi −
n∑

i=1

αiyi 〈xi ,w∗〉 via eq(4) and eq(5)

=
1

2

∑
i,j

αiαjyiyj 〈xi , xj〉+
n∑

i=1

αi −
∑
i,j

αiαjyiyj 〈xi , xj〉 via eq(3)

=
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyj 〈xi , xj〉
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Dual

maxα infw,b,ξ{L(w, b, ξ, α, β)} gives the dual form:

max
α

n∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyj 〈xi , xj〉

s.t. 0 ≤ αi ≤ C , i = 1, · · · , n, (via eq(4))
n∑

i=1

αiyi = 0

Let α∗ be the solution.
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From dual to primal variables

How to compute w∗, b∗ from α∗?
Via eq(3), we have

w∗ =
n∑

i=1

α∗i yixi . (8)

Via comp condition eq(6), we have αi [1− ξi − yi (〈xi ,w〉+ b)] = 0,∀i .
When αi > 0, we know 1− ξi − yi (〈xi ,w〉+ b) = 0. It will be great if
ξi = 0 too. When will it happen? βi > 0⇒ ξi = 0 because of comp
condition eq(7). Since C − αi − βi = 0 (4), βi > 0 means α < C .
For any i , s.t. 0 < αi < C , 1− yi (〈xi ,w〉+ b) = 0, so (multiple yi on
both sides, and the fact that y2

i = 1)

b∗ = yi − 〈xi ,w∗〉 (9)

Numerically wiser to take the average over all such training points
(Burges tutorial).
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Support Vectors

y∗ = sign(〈x ,w∗〉+ b∗) = sign(
∑n

i=1 α
∗
i yi 〈xi , x〉+ b∗).

It turns out many α∗i = 0. Those xj with α∗j > 0 are called support
vectors. Let S = {j : α∗j > 0}

y∗ = sign(
∑
j∈S

α∗j yj 〈xj , x〉+ b∗)

Note now y can be predicted without explicitly expressing w as
long as the support vectors are stored.
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Support Vectors

<w,x>+b = -1

<w,x>+b = +1

<w,x>+b = 0

Class -1

Class +1

Margin SVs

Non-margin SVs (correctly classified)

Non-margin SVs (mis-classified)

Non-margin SVs (on the 
decision boundary)

Decision 
boundary

Two types of SVs:

Margin SVs: 0 < αi < C (ξi = 0, on the dash lines)

Non-margin SVs: αi = C (ξi > 0, thus violating the margin. More specifically, when 1 > ξi > 0,
correctly classified; when ξi > 1, it’s mis-classified; when ξi = 1, on the decision boundary)
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Dual

All derivation holds if one replaces xj with φ(xj) and let kernel
function κ(x, x′) = 〈φ(x), φ(x′)〉. This gives

max
α

n∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyjκ(xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, · · · , n
n∑

i=1

αiyi = 0

y∗ = sign[
∑
j∈S

α∗j yjκ(xj , x) + b∗].

This leads to non-linear SVM and more generally kernel methods
(will be covered in later lectures).
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Theoretical justification

An example of generalisation bounds is below (just to give you an
intuition, no need to fully understand it for now).

Theorem (VC bound)

Denote h as the VC dimension, for all n ≥ h, for any δ ∈ (0, 1),
with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2
h log 2en

h + log( 2
δ )

n
.

Margin γ = 1/‖w ‖, h ≤ min{D, d4R2

γ2 e}, where the radius

R2 = maxni=1 〈Φ(xi ),Φ(xi )〉 (assuming data are already centered)
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Theoretical justification

Other tighter bounds such as Rademacher bounds, PAC-Bayes
bounds etc..
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That’s all

Thanks!
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