ML Session 2, Part 2: Support Vector Machines

Javen Shi

29 Nov. 2018

Javen Shi ML Session 2, Part 2: Support Vector Machines

Table of Contents I

Refresh Optimisation

- Inner product, sign, and decision function
- Convexity
- Lagrange and Duality

- Perceptron
- Support Vector Machines

Refresh concepts

Inner product

For vectors $\mathbf{x} = [x^1, x^2, \cdots, x^d]^\top$, $\mathbf{w} = [w^1, w^2, \cdots, w^d]^\top$, inner product

$$\langle {\sf x}, {\sf w}
angle = \sum_{i=1}^d x^i w^i.$$

We write $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{w} \in \mathbb{R}^d$ to say they are *d*-dimensional real number vectors. We consider all vectors as column vectors by default. \top is the transpose. We also use the matlab syntax that $[x^1;x^2;\cdots;x^d]$ as column vector.

Refresh concepts

Inner product

For vectors
$$\mathbf{x} = [x^1, x^2, \cdots, x^d]^\top$$
, $\mathbf{w} = [w^1, w^2, \cdots, w^d]^\top$, inner product

$$\langle \mathbf{x}, \mathbf{w} \rangle = \sum_{i=1}^d x^i w^i.$$

We write $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{w} \in \mathbb{R}^d$ to say they are *d*-dimensional real number vectors. We consider all vectors as column vectors by default. \top is the transpose. We also use the matlab syntax that $[x^1;x^2;\cdots;x^d]$ as column vector.

Example:
$$a = [1; 3; 1.5], b = [2; 1; 1]. \langle a, b \rangle = ?$$

Refresh concepts

Inner product

For vectors $\mathbf{x} = [x^1, x^2, \cdots, x^d]^\top$, $\mathbf{w} = [w^1, w^2, \cdots, w^d]^\top$, inner product

$$\langle {\sf x}, {\sf w}
angle = \sum_{i=1}^d x^i w^i.$$

We write $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{w} \in \mathbb{R}^d$ to say they are *d*-dimensional real number vectors. We consider all vectors as column vectors by default. \top is the transpose. We also use the matlab syntax that $[x^1;x^2;\cdots;x^d]$ as column vector.

Example:
$$a = [1; 3; 1.5], b = [2; 1; 1]. \langle a, b \rangle = ?$$

= $1 \times 2 + 3 \times 1 + 1.5 \times 1 = 6.5$

Inner product, sign, and decision function Convexity Lagrange and Duality

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$\operatorname{sign}(a) = \left\{ egin{array}{cc} 1 & ext{if } a > 0 \\ -1 & ext{otherwise} \end{array}
ight.$$

Inner product, sign, and decision function Convexity Lagrange and Duality

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$\operatorname{sign}(a) = \left\{ egin{array}{cc} 1 & ext{if } a > 0 \\ -1 & ext{otherwise} \end{array}
ight.$$

Examples: sign(20) =?, sign(-5) =?, sign(0) =?.

Inner product, sign, and decision function Convexity Lagrange and Duality

Refresh concepts

Sign function

For any scalar $a \in \mathbb{R}$,

$$\operatorname{sign}(a) = \left\{ egin{array}{cc} 1 & ext{if } a > 0 \\ -1 & ext{otherwise} \end{array}
ight.$$

Examples: sign(20) = ?, sign(-5) = ?, sign(0) = ?. sign(20) = 1, sign(-5) = -1, sign(0) = -1. Refresh Optimisation Classification Algorithms Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

Multi-class
$$g(\mathbf{x}; \mathbf{w}) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} (\langle \mathbf{x}, \mathbf{w}_y \rangle).$$

where \mathbf{w}, \mathbf{w}_y are the parameters, and $\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d, \mathbf{w}_y \in \mathbb{R}^d$.

¹ for $b \in \mathbb{R}$, more general form $\langle \mathbf{x}, \mathbf{w} \rangle + b$ can be rewritten as $\langle [\mathbf{x}; 1], [\mathbf{w}; b] \rangle$ Javen Shi ML Session 2, Part 2; Support Vector Machines Refresh Optimisation Classification Algorithms Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

Multi-class $g(\mathbf{x}; \mathbf{w}) = \operatorname{argmax}_{y \in \mathcal{Y}} (\langle \mathbf{x}, \mathbf{w}_y \rangle).$

where \mathbf{w}, \mathbf{w}_y are the parameters, and $\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d, \mathbf{w}_y \in \mathbb{R}^d$. Example 1: $\mathbf{x} = [1; 3.5], \mathbf{w} = [2; -1]. g(\mathbf{x}; \mathbf{w}) =?$

¹for $b \in \mathbb{R}$, more general form $\langle \mathbf{x}, \mathbf{w} \rangle + b$ can be rewritten as $\langle [\mathbf{x}; 1], [\mathbf{w}; b] \rangle$

Javen Shi

ML Session 2, Part 2: Support Vector Machines

Inner product, sign, and decision function Convexity Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$
Multi-class $g(\mathbf{x}; \mathbf{w}) = \operatorname{argmax}_{y \in \mathcal{Y}}(\langle \mathbf{x}, \mathbf{w}_y \rangle).$

where \mathbf{w}, \mathbf{w}_y are the parameters, and $\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d, \mathbf{w}_y \in \mathbb{R}^d$. Example 1: $\mathbf{x} = [1; 3.5], \mathbf{w} = [2; -1].$ $g(\mathbf{x}; \mathbf{w}) = ?$ $= \operatorname{sign}(1 \times 2 + 3.5 \times (-1)) = \operatorname{sign}(-1.5) = -1.$

¹for $b \in \mathbb{R}$, more general form $\langle x, w \rangle + b$ can be rewritten as $\langle [x; 1], [w; b] \rangle$

Inner product, sign, and decision function Convexity Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

Multi-class $g(\mathbf{x}; \mathbf{w}) = \operatorname{argmax}_{y \in \mathcal{Y}} (\langle \mathbf{x}, \mathbf{w}_y \rangle).$

where \mathbf{w}, \mathbf{w}_y are the parameters, and $\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d, \mathbf{w}_y \in \mathbb{R}^d$. Example 1: $\mathbf{x} = [1; 3.5], \mathbf{w} = [2; -1]. g(\mathbf{x}; \mathbf{w}) = ?$ $= \text{sign}(1 \times 2 + 3.5 \times (-1)) = \text{sign}(-1.5) = -1.$ Example 2: $\mathbf{x} = [1; 3.5], \mathbf{w}_1 = [2; -1], \mathbf{w}_2 = [1; 2], \mathbf{w}_3 = [3; 2], y = 1, 2, 3.$ $g(\mathbf{x}; \mathbf{w}) = ?$

¹for $b \in \mathbb{R}$, more general form $\langle \mathbf{x}, \mathbf{w} \rangle + b$ can be rewritten as $\langle [\mathbf{x}; \mathbf{1}], [\mathbf{w}; b] \rangle$

Inner product, sign, and decision function Convexity Lagrange and Duality

Decision functions

Typical decision functions for classification 1 :

Binary-class
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

Multi-class
$$g(\mathbf{x}; \mathbf{w}) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} (\langle \mathbf{x}, \mathbf{w}_y \rangle).$$

where \mathbf{w}, \mathbf{w}_y are the parameters, and $\mathbf{x} \in \mathbb{R}^d, \mathbf{w} \in \mathbb{R}^d, \mathbf{w}_y \in \mathbb{R}^d$. Example 1: $\mathbf{x} = [1; 3.5], \mathbf{w} = [2; -1]$. $g(\mathbf{x}; \mathbf{w}) = ?$ $= \text{sign}(1 \times 2 + 3.5 \times (-1)) = \text{sign}(-1.5) = -1$. Example 2: $\mathbf{x} = [1; 3.5], \mathbf{w}_1 = [2; -1], \mathbf{w}_2 = [1; 2], \mathbf{w}_3 = [3; 2], y = 1, 2, 3$. $g(\mathbf{x}; \mathbf{w}) = ? \langle \mathbf{x}, \mathbf{w}_1 \rangle = -1.5, \langle \mathbf{x}, \mathbf{w}_2 \rangle = 8, \langle \mathbf{x}, \mathbf{w}_3 \rangle = 10$. Thus $g(\mathbf{x}; \mathbf{w}) = \operatorname{argmax}_{y \in \{1, 2, 3\}} \langle \mathbf{x}, \mathbf{w}_y \rangle = 3$.

¹for $b \in \mathbb{R}$, more general form $\langle \mathbf{x}, \mathbf{w} \rangle + b$ can be rewritten as $\langle [\mathbf{x}; 1], [\mathbf{w}; b] \rangle$

Inner product, sign, and decision function Convexity Lagrange and Duality

- Convexity for a function
- Convexity for a set

Illustrate using the whiteboard or the document camera.

Lagrange multipliers and function

To solve a convex minimisation problem,

$$\begin{aligned} \min_{\mathbf{x}} f_0(\mathbf{x}) \\ \text{s.t.} \quad f_i(\mathbf{x}) \leq 0, i = 1, \cdots, m, \end{aligned} \qquad (\text{Primal})$$

where f_0 is convex, and the feasible set (let's call it A) is convex (equivalent to all f_0 , f_i are convex). **x** are called primal variables. Lagrange function:

$$L(\mathbf{x},\alpha) = f_0(\mathbf{x}) + \sum_{i=1}^m \alpha_i f_i(\mathbf{x}),$$

where $\alpha_i \ge 0$ are called Lagrange multipliers also known as (a.k.a) dual variables.

Refresh Optimisation Classification Algorithms Lagrange and Duality

Dual problem

 $L(\mathbf{x}, \alpha)$ produces the primal objective:

$$f_0(\mathbf{x}) = \max_{\alpha \ge 0} L(\mathbf{x}, \alpha).$$

 $L(\mathbf{x}, \alpha)$ produces the dual objective:

$$D(\alpha) = \min_{\mathbf{x} \in A} L(\mathbf{x}, \alpha).$$

The following problem is called the (Lagrangian) dual problem,

$$\max_{\alpha} D(\alpha)$$

s.t. $\alpha_i \ge 0, i = 1, \cdots, m.$ (Dual)

Primal and Dual relation

In general:

$$\min_{\mathbf{x}\in\mathcal{A}} f_0(\mathbf{x}) = \min_{\mathbf{x}\in\mathcal{A}} (\max_{\alpha\geq 0} L(\mathbf{x},\alpha)) \ge \max_{\alpha\geq 0} (\min_{\mathbf{x}\in\mathcal{A}} L(\mathbf{x},\alpha)) = \max_{\alpha\geq 0} D(\alpha).$$

Since $L(\mathbf{x}, \alpha)$ is convex w.r.t. \mathbf{x} , and concave w.r.t. α , we have

$$\min_{\mathbf{x}\in A} f_0(\mathbf{x}) = \min_{\mathbf{x}\in A} (\max_{\alpha\geq 0} L(\mathbf{x}, \alpha)) = \max_{\alpha\geq 0} (\min_{\mathbf{x}\in A} L(\mathbf{x}, \alpha)) = \max_{\alpha\geq 0} D(\alpha).$$

To solve the primal $\min_{\mathbf{x}\in A} f_0(\mathbf{x})$, one can solve the dual $\max_{\alpha\geq 0} D(\alpha)$.

The following always holds $D(\alpha) \leq f_0(\mathbf{x}), \ \forall \mathbf{x}, \alpha \text{ (so called weak duality)}$

Sometimes (not always) below holds $\max_{\alpha} D(\alpha) = \min_{\mathbf{x}} f_0(\mathbf{x})$ (so called strong duality) Strong duality holds for SVM.

How to do it?

Given a problem, how to get its dual form?

- ${\small \textcircled{0}}$ transform the problem to a standard form
- vrite down the Lagrange function
- use optimality conditions to get equations
 - 1st order condition
 - complementarity conditions
- remove the primal variables.

Examples.

Perceptron Algorithm

Assume $g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle)$, where $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$, $y \in \{-1, 1\}$.

Input: training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, step size η , #iter T Initialise $w_1 = \mathbf{0}$ for t = 1 to T do

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \sum_{i=1}^n (y_i \, \mathbf{x}_i \, \mathbf{1}_{\{y_i \langle \mathbf{x}_i, \mathbf{w}_t \rangle < 0\}}) \tag{1}$$

end for Output: $w^* = w_T$

The class of \mathbf{x} is predicted via

$$y^* = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w}^* \rangle)$$

Perceptron Support Vector Machines

View it in ERM

$$\min_{\mathbf{w},\xi} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}, \quad \text{s.t.} \quad y_{i} \langle \mathbf{x}_{i}, \mathbf{w} \rangle \geq -\xi_{i}, \xi_{i} \geq 0$$

whose unconstrained form is

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \max\{0, -y_i \langle \mathbf{x}_i, \mathbf{w} \rangle\} \Leftrightarrow \min_{\mathbf{w}} R_n(\mathbf{w}, \ell_{pern})$$

with Loss $\ell_{pern}(\mathbf{x}, y, \mathbf{w}) = \max\{0, -y \langle \mathbf{x}, \mathbf{w} \rangle\}$ and Empirical Risk $R_n(\mathbf{w}, \ell_{pern}) = \frac{1}{n} \sum_{i=1}^n \ell_{pern}(\mathbf{x}_i, y_i, \mathbf{w}).$

Sub-gradient
$$\frac{\partial R_n(\mathbf{w}, \ell_{pern})}{\partial \mathbf{w}} = -\frac{1}{n} \sum_{i=1}^n (y_i \mathbf{x}_i \mathbf{1}_{\{y_i(\langle \mathbf{x}_i, \mathbf{w}_t \rangle) < 0\}}).$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta' \frac{\partial R_n(\mathbf{w}, \ell_{pern})}{\partial \mathbf{w}} = \mathbf{w}_t + \eta' \frac{1}{n} \sum_{i=1}^n (y_i \, \mathbf{x}_i \, \mathbf{1}_{\{y_i(\langle \mathbf{x}_i, \mathbf{w}_t \rangle) < 0\}})$$

Letting $\eta = \eta' \frac{1}{n}$ recovers the equation (1).

Perceptron Support Vector Machines

Max Margin

Picture courtesy of wikipedia

Perceptron Support Vector Machines

Max Margin Formulation

One form of soft margin binary Support Vector Machines (SVMs) (a primal form) is

$$\min_{\mathbf{w},b,\gamma,\xi} -\gamma + C \sum_{i=1}^{n} \xi_{i}$$
s.t. $y_{i}(\langle \mathbf{x}_{i}, \mathbf{w} \rangle + b) \geq \gamma - \xi_{i}, \xi_{i} \geq 0, \|\mathbf{w}\|^{2} = 1$

$$(2)$$

For a testing \mathbf{x}' , given the learnt \mathbf{w}^* , b^* , the predicted label

$$y^* = g(\mathbf{x}'; \mathbf{w}^*) = \operatorname{sign}(\langle \mathbf{x}', \mathbf{w}^* \rangle + b^*).$$

Primal

A more popular version is (still a primal form)

$$\begin{split} \min_{\mathbf{w},b,\xi} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^n \xi_i, \\ \text{s.t.} \quad y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) \geq 1 - \xi_i, \xi_i \geq 0, i = 1, \cdots, n, \end{split}$$

This is equivalent to the previous form and $\gamma = 1/\|\, {\bf w}\,\|.$

View in in ERM hinge loss $\ell_H(\mathbf{x}, y, \mathbf{w}) = \max\{0, 1 - y(\langle \mathbf{x}, \mathbf{w} \rangle + b)\}$, and $\Omega(\mathbf{w}) = \frac{1}{2} ||\mathbf{w}||^2$ with a proper λ .

It is often solved by using Lagrange multipliers and duality.

Perceptron Support Vector Machines

Lagrangian function

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
$$+ \sum_{i=1}^n \alpha_i [1 - \xi_i - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)] + \sum_{i=1}^n \beta_i (-\xi_i)$$

Optimise Lagrangian function — 1st order condition

To get $\inf_{\mathbf{w},b,\xi} \{ L(\mathbf{w}, b, \xi, \alpha, \beta) \}$, by 1st order condition

$$\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w}^* - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i = 0$$
(3)

$$\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial \xi_i} = 0 \Rightarrow C - \alpha_i - \beta_i = 0$$
(4)

$$\frac{\partial L(\mathbf{w}, b, \xi, \alpha, \beta)}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
(5)

Perceptron Support Vector Machines

Optimise Lagrangian function — Complementarity conditions

Complementarity conditions

$$\alpha_i [1 - \xi_i - y_i (\langle \mathbf{x}_i, \mathbf{w} \rangle + b)] = 0, \forall i$$

$$\beta_i \xi_i = 0, \forall i$$
(6)
(7)

Perceptron Support Vector Machines

Dual

$$L(\mathbf{w}^*, b^*, \xi^*, \alpha, \beta)$$

$$= \frac{1}{2} \langle \mathbf{w}^*, \mathbf{w}^* \rangle + \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{w}^* \rangle$$

$$+ \sum_{i=1}^n \xi_i^* (C - \alpha_i - \beta_i) + b(\sum_{i=1}^n \alpha_i y_i)$$

$$= \frac{1}{2} \langle \mathbf{w}^*, \mathbf{w}^* \rangle + \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{w}^* \rangle \quad \text{via eq(4) and eq(5)}$$

$$= \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^n \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \text{ via eq(3)}$$

$$= \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

 $\max_{\alpha} \inf_{\mathbf{w}, b, \xi} \{ L(\mathbf{w}, b, \xi, \alpha, \beta) \}$ gives the dual form:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

s.t. $0 \le \alpha_{i} \le C, i = 1, \cdots, n$, (via eq(4))
 $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

Let α^* be the solution.

From dual to primal variables

How to compute \mathbf{w}^*, b^* from α^* ? Via eq(3), we have

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i. \tag{8}$$

Via comp condition eq(6), we have $\alpha_i [1 - \xi_i - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b)] = 0, \forall i$. When $\alpha_i > 0$, we know $1 - \xi_i - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) = 0$. It will be great if $\xi_i = 0$ too. When will it happen? $\beta_i > 0 \Rightarrow \xi_i = 0$ because of comp condition eq(7). Since $C - \alpha_i - \beta_i = 0$ (4), $\beta_i > 0$ means $\alpha < C$. For any *i*, s.t. $0 < \alpha_i < C$, $1 - y_i(\langle \mathbf{x}_i, \mathbf{w} \rangle + b) = 0$, so (multiple y_i on both sides, and the fact that $y_i^2 = 1$)

$$b^* = y_i - \langle \mathbf{x}_i, \mathbf{w}^* \rangle \tag{9}$$

Numerically wiser to take the average over all such training points (Burges tutorial).

Support Vectors

$$y^* = \operatorname{sign}(\langle x, \mathbf{w}^* \rangle + b^*) = \operatorname{sign}(\sum_{i=1}^n \alpha_i^* y_i \langle \mathbf{x}_i, x \rangle + b^*).$$

It turns out many $\alpha_i^* = 0$. Those \mathbf{x}_j with $\alpha_j^* > 0$ are called support vectors. Let $S = \{j : \alpha_j^* > 0\}$

$$y^* = \operatorname{sign}(\sum_{j \in S} lpha_j^* y_j \langle \mathbf{x}_j, \mathbf{x}
angle + b^*))$$

Note now y can be predicted without explicitly expressing **w** as long as the support vectors are stored.

Perceptron Support Vector Machines

Support Vectors

Two types of SVs:

- Margin SVs: $0 < \alpha_i < C$ ($\xi_i = 0$, on the dash lines)
- Non-margin SVs: α_i = C (ξ_i > 0, thus violating the margin. More specifically, when 1 > ξ_i > 0, correctly classified; when ξ_i > 1, it's mis-classified; when ξ_i = 1, on the decision boundary)

Refresh Optimisation Perceptron Classification Algorithms Support Vector Machines

Dual

All derivation holds if one replaces \mathbf{x}_j with $\phi(\mathbf{x}_j)$ and let kernel function $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$. This gives

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \kappa(\mathbf{x}_{i}, \mathbf{x}_{j})$$

s.t. $0 \le \alpha_{i} \le C, i = 1, \cdots, n$
 $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

$$y^* = \operatorname{sign}[\sum_{j \in S} \alpha_j^* y_j \kappa(\mathbf{x}_j, \mathbf{x}) + b^*].$$

This leads to non-linear SVM and more generally kernel methods (will be covered in later lectures).

Perceptron Support Vector Machines

Theoretical justification

An example of generalisation bounds is below (just to give you an intuition, no need to fully understand it for now).

Theorem (VC bound)

Denote h as the VC dimension, for all $n \ge h$, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, $\forall g \in \mathfrak{G}$

$$R(g) \leq R_n(g) + 2\sqrt{2rac{h\lograc{2en}{h} + \log(rac{2}{\delta})}{n}}.$$

Margin $\gamma = 1/\|\mathbf{w}\|$, $h \le \min\{D, \lceil \frac{4R^2}{\gamma^2} \rceil\}$, where the radius $R^2 = \max_{i=1}^n \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_i) \rangle$ (assuming data are already centered)

Perceptron Support Vector Machines

Theoretical justification

Other tighter bounds such as Rademacher bounds, PAC-Bayes bounds *etc.*.

Perceptron Support Vector Machines

That's all

Thanks!

Javen Shi ML Session 2, Part 2: Support Vector Machines