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Abstract

We propose hashing to facilitate efficient kernels. This generalizes previous work using
sampling and we show a principled way to compute the kernel matrix for data streams and
sparse feature spaces. Moreover, we give deviation bounds from the exact kernel matrix.
This has applications to estimation on strings and graphs.
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1. Introduction

In recent years, a number of methods have been proposed to deal with the fact that kernel
methods have slow runtime performance if the number of kernel functions used in the
expansion is large. We denote by X the domain of observations and we assume that H is a
Reproducing Kernel Hilbert Space H with kernel k : X× X→ R.

Keeping the kernel expansion small One line of research (Burges and Schölkopf, 1997)
aims to reduce the number of basis functions needed in the overall function expansion. This
led to a number of reduced set Support Vector algorithms which work as follows: a) solve
the full estimation problem resulting in a kernel expansion, b) use a subset of basis functions
to approximate the exact solution, c) use the latter for estimation. While the approxima-
tion of the full function expansion is typically not very accurate, very good generalization
performance is reported. The big problem in this approach is that the optimization of the
reduced set of vectors is rather nontrivial.
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Work on estimation on a budget (Dekel et al., 2006) tries to ensure that this problem
does not arise in the first place by ensuring that the number of kernel functions used in the
expansion never exceeds a given budget or by using an `1 penalty (Mangasarian, 1998). For
some algorithms, e.g. binary classification, guarantees are available in the online setting.

Keeping the kernel simple A second line of research uses variants of sampling to achieve
a similar goal. That is, one uses the feature map representation

k(x, x′) =
〈
φ(x), φ(x′)

〉
. (1)

Here φ maps X into some feature space F. This expansion is approximated by a mapping
φ̄ : X→ F̄

k̄(x, x′) =
〈
φ̄(x), φ̄(x′)

〉
often φ̄(x) = Mφ(x). (2)

Here φ̄ has more desirable computational properties than φ. For instance, φ̄ is finite di-
mensional (Fine and Scheinberg, 2001; Kontorovich, 2007; Rahimi and Recht, 2008), or φ̄
is particularly sparse (Li et al., 2007).

Our Contribution Firstly, we show that the sampling schemes of Kontorovich (2007)
and Rahimi and Recht (2008) can be applied to a considerably larger class of kernels than
originally suggested — the authors only consider languages and radial basis functions re-
spectively. Secondly, we propose a biased approximation φ̄ of φ which allows efficient com-
putations even on data streams. Our work is inspired by the count-min sketch of Cormode
and Muthukrishnan (2004), which uses hash functions as a computationally efficient means
of randomization. This affords storage efficiency (we need not store random vectors) and
at the same time they give performance guarantees comparable to those obtained by means
of random projections.

As an application, we demonstrate computational benefits over suffix array string kernels
in the case of document analysis and we discuss a kernel between graphs which only becomes
computationally feasible by means of compressed representation.

Outline We begin with a description of previous work in Section 2 and propose the hash
kernels in Section 3 which is suitable for data with simple structure such as strings. An
analysis follows in Section 4. And we propose a graphlet kernel which generalizes hash
kernels to data with general structure — graphs and discuss a MCMC sampler in Section 5.
Finally we conclude with experiments in Section 6.

2. Previous Work and Applications

Generic Randomization Kontorovich (2007); Rahimi and Recht (2008) independently
propose the following: denote by c ∈ C a random variable with measure P. Moreover, let
φc : X→ R be functions indexed by c ∈ C. For kernels of type

k(x, x′) = Ec∼P(c)

[
φc(x)φc(x′)

]
(3)

an approximation can be obtained by sampling C = {c1, . . . , cn} ∼ P and expanding

k̄(x, x′) =
1
n

n∑
i=1

φci(x)φci(x
′). (4)



In other words, we approximate the feature map φ(x) by φ̄(x) = n−
1
2 (φc1(x), . . . , φcn(x))

in the sense that their resulting kernel is similar. Assuming that φc(x)φc(x′) has bounded
range, i.e. φc(x)φc(x′) ∈ [a, a + R] for all c, x and x′ one may use Chernoff bounds to give
guarantees for large deviations between k(x, x′) and k̄(x, x′). For matrices of size m ×m
one obtains bounds of type O(R2ε−2 log m) by combining Hoeffding’s theorem with a union
bound argument over the O(m2) different elements of the kernel matrix. The strategy has
widespread applications beyond those of Kontorovich (2007); Rahimi and Recht (2008):

• Kontorovich (2007) uses it to design kernels on regular languages by sampling from
the class of languages.
• The marginalized kernels of Tsuda et al. (2002) use a setting identical to (3) as the

basis for comparisons between strings and graphs by defining a random walk as the
feature extractor. Instead of exact computation we could do sampling.
• The Binet-Cauchy kernels of Vishwanathan et al. (2007b) use this approach to com-

pare trajectories of dynamical systems. Here c is the (discrete or continuous) time
and P(c) discounts over future events.
• The empirical kernel map of Schölkopf (1997) uses C = X and employs some kernel

function κ to define φc(x) = κ(c, x). Moreover, P(c) = P(x), i.e. placing our sampling
points ci on training data.

• For RBF kernels Rahimi and Recht (2008) use the fact that k may be expressed in
the system of eigenfunctions which commute with the translation operator, that is
the Fourier basis

k(x, x′) = Ew∼P(w)[e
−i〈w,x〉ei〈w,x′〉]. (5)

Here P(w) is a nonnegative measure which exists for any RBF kernel by virtue of
Bochner’s theorem, hence (5) can be recast as a special case of (3). What sets it apart
is the fact that the variance of the features φw(x) = ei〈w,x〉 is relatively evenly spread.
(5) extends immediately to Fourier transformations on other symmetry groups (Berg
et al., 1984).
• The conditional independence kernel of Watkins (2000) is one of the first instances

of (3). Here X,C are domains of biological sequences, φc(x) = P(x|c) denotes the
probability of observing x given the ancestor c, and P(c) denotes a distribution over
ancestors.

While in many cases straightforward sampling may suffice, it can prove disastrous whenever
φc(x) has only a small number of significant terms. For instance, for the pair-HMM kernel
most strings c are unlikely ancestors of x and x′, hence P(x|c) and P(x′|c) will be negligible
for most c. As a consequence the number of strings required to obtain a good estimate is
prohibitively large — we need to reduce φ̄ further.

Locally Sensitive Hashing The basic idea of randomized projections (Indyk and Motawani,
1998) is that due to concentration of measures the inner product 〈φ(x), φ(x′)〉 can be approx-
imated by

∑n
i=1 〈vi, φ(x)〉 〈vi, φ(x′)〉 efficiently, provided that the distribution generating the

vectors vi satisfies basic regularity conditions. For example, vi ∼ N(0, I) is sufficient, where
I is an identity matrix. This allows one to obtain Chernoff bounds and O(ε−2 log m) rates of
approximation, where m is the number of instances. The main cost is to store vi and perform



the O(nm) multiply-adds, thus rendering this approach too expensive as a preprocessing
step in many applications.

Achlioptas (2003) proposes a random projection approach that uses symmetric random
variables to project the original feature onto a lower dimension feature space. This operation
is simple and faster and the author shows it does not sacrifice the quality of the embedding.
Moreover, it can be directly applied to online learning tasks. Unfortunately, the projection
remains dense resulting in relatively poor computational and space performance in our
experiments.

Sparsification Li et al. (2007) propose to sparsify φ(x) by randomization while retaining
the inner products. One problem with this approach is that when performing optimization
for linear function classes, the weight vector w which is a linear combination of φ(xi) remains
large and dense, thus obliterating a significant part of the computational savings gained in
sparsifying φ.

Count-Min Sketch Cormode and Muthukrishnan (2004) propose an ingenious method
for representing data streams. Denote by I an index set. Moreover, let h : I → {1, . . . , n}
be a hash function and assume that there exists a distribution over h such that they are
pairwise independent.

Assume that we draw d hash functions hi at random and let S ∈ Rn×d be a sketch
matrix. For a stream of symbols s update Shi(s),i ← Shi(s),i +1 for all 1 ≤ i ≤ d. To retrieve
the (approximate) counts for symbol s′ compute mini Shi(s′),i. Hence the name count-min
sketch. The idea is that by storing counts of s according to several hash functions we
can reduce the probability of collision with another particularly large symbol. Cormode
and Muthukrishnan (2004) show that only O(ε−1 log 1/δ) storage is required for an ε-good
approximation, where 1− δ is the confidence.

Cormode and Muthukrishnan (2004) discuss approximating inner products and the ex-
tension to signed rather than nonnegative counts. However, the bounds degrade for real-
valued entries. Even worse, for the hashing to work, one needs to take the minimum over
a set of inner product candidates.

Random Feature Mixing Ganchev and Dredze (2008) provide empirical evidence that
using hashing can eliminate alphabet storage and reduce the number of parameters without
severely impacting model performance. In addition, Langford et al. (2007) released the
Vowpal Wabbit fast online learning software which uses a hash representation similar to the
one discussed here.

Hash kernel on strings Shi et al. (2009) propose a hash kernel to deal with the issue
of computational efficiency by a very simple algorithm: high-dimensional vectors are com-
pressed by adding up all coordinates which have the same hash value — one only needs to
perform as many calculations as there are nonzero terms in the vector. The hash kernel can
jointly hash both label and features, thus the memory footprint is essentially independent
of the number of classes used.



3. Hash Kernels

Our goal is to design a possibly biased approximation which a) approximately preserves the
inner product, b) which is generally applicable, c) which can work on data streams, and d)
which increases the density of the feature matrices (the latter matters for fast linear algebra
on CPUs and graphics cards).

Kernel Approximation As before denote by I an index set and let h : I→ {1, . . . , n} be
a hash function drawn from a distribution of pairwise independent hash functions. Finally,
assume that φ(x) is indexed by I and that we may compute φi(x) for all nonzero terms
efficiently. In this case we define the hash kernel as follows:

k̄(x, x′) =
〈
φ̄(x), φ̄(x′)

〉
with φ̄j(x) =

∑
i∈I;h(i)=j

φi(x) (6)

We are accumulating all coordinates i of φ(x) for which h(i) generates the same value j into
coordinate φ̄j(x). Our claim is that hashing preserves information as well as randomized
projections with significantly less computation. Before providing an analysis let us discuss
two key applications: efficient hashing of kernels on strings and cases where the number of
classes is very high, such as categorization in an ontology.

Strings Denote by X = I the domain of strings on some alphabet. Moreover, assume that
φi(x) := λi#i(x) denotes the number of times the substring i occurs in x, weighted by some
coefficient λi ≥ 0. This allows us to compute a large family of kernels via

k(x, x′) =
∑
i∈I

λ2
i #i(x)#i(x′). (7)

Teo and Vishwanathan (2006) propose a storage efficient O(|x| + |x′|) time algorithm for
computing k for a given pair of strings x, x′. Here |x| denotes the length of the string. More-
over, a weighted combination

∑
i αik(xi, x) can be computed in O(|x|) time after O(

∑
i |xi|)

preprocessing.
The big drawback with string kernels using suffix arrays/trees is that they require large

amounts of working memory. Approximately a factor of 50 additional storage is required
for processing and analysis. Moreover, updates to a weighted combination are costly. This
makes it virtually impossible to apply (7) to millions of documents. Even for modest
document lengths this would require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since for every document x only a
relatively small number of terms #i(x) will have nonzero values — at most O(|x|2) but in
practice we will restrict ourselves to substrings of a bounded length l leading to a cost of
O(|x| · l) — this can be done efficiently in a single pass over x. Moreover, we can compute
φ̄(x) as a pre-processing step and discard x altogether.

Note that this process spreads out the features available in a document evenly over the
coordinates of φ̄(x). Moreover, note that a similar procedure can be used to obtain good
estimates for a TF/IDF reweighting of the counts obtained, thus rendering preprocessing
as memory efficient as the actual computation of the kernel.



Multiclass Classification can sometimes lead to a very high dimensional feature vector
even if the underlying feature map x → φ(x) may be acceptable. For instance, for a bag-
of-words representation of documents with 104 unique words and 103 classes this involves
up to 107 coefficients to store the parameter vector directly when the φ(x, y) = ey ⊗ φ(x),
where ⊗ is the tensor product and ey is a vector whose y-th entry is 1 and the rest are zero.
The dimensionality of ey is the number of classes.

Note that in the above case φ(x, y) corresponds to a sparse vector which has nonzero
terms only in the part corresponding to ey. That is, by using the joint index (i, y) with
φ(x, y)(i,y′) = φi(x)δy,y′ we may simply apply (6) to an extended index to obtain hashed
versions of multiclass vectors. We have

φ̄j(x, y) =
∑

i∈I;h(i,y)=j

φi(x). (8)

In some cases it may be desirable to compute a compressed version of φ(x), that is, φ̄(x)
first and subsequently expand terms with y. In particular for strings this can be useful since
it means that we need not parse x for every potential value of y. While this deteriorates the
approximation in an additive fashion it can offer significant computational savings since all
we need to do is permute a given feature vector as opposed to performing any summations.

Streams Some features of observations arrive as a stream. For instance, when performing
estimation on graphs, we may obtain properties of the graph by using an MCMC sampler.
The advantage is that we need not store the entire data stream but rather just use summary
statistics obtained by hashing.

4. Analysis

We show that the penalty we incur from using hashing to compress the number of coordi-
nates only grows logarithmically with the number of objects and with the number of classes.
While we are unable to obtain the excellent O(ε−1) rates offered by the count-min sketch,
our approach retains the inner product property thus making hashing accessible to linear
estimation.

Bias and Variance A first step in our analysis is to compute bias and variance of the
approximation φ̄(x) of φ(x). Whenever needed we will write φ̄h(x) and k̄h(x, x′) to make
the dependence on the hash function h explicit. Using (6) we have

k̄h(x, x′) =
∑

j

∑
i:h(i)=j

φi(x)
∑

i′:h(i′)=j

φ′i(x
′)

= k(x, x′) +
∑

i,i′:i6=i′

φi(x)φi′(x′)δh(i),h(i′)

where δ is the Kronecker delta function. Taking the expectation with respect to the random
choice of hash functions h we obtain the expected bias

Eh[k̄h(x, x′)] =
(
1− 1

n

)
k(x, x′) + 1

n

∑
i

φi(x)
∑
i′

φi′(x′)



Here we exploited the fact that for a random choice of hash functions the collision probability
is 1

n uniformly over all pairs (i, j). Consequently k̄(x, x′) is a biased estimator of the kernel
matrix, with the bias decreasing inversely proportional to the number of hash bins.

The main change is a rank-1 modification in the kernel matrix. Given the inherent high
dimensionality of the estimation problem, a one dimensional change does not in general
have a significant effect on generalization.

Straightforward (and tedious) calculation which is completely analogous to the above
derivation leads to the following expression for the variance Varh[k̄h(x, x′)] of the hash
kernel:

Varh[k̄h(x, x′)] = n−1
n2

(
k(x, x)k(x′, x′) + k2(x, x′)− 2

∑
i

φ2
i (x)φ2

i (x
′)
)

Key in the derivation is our assumption that the family of hash functions we are dealing
with is pairwise independent.

As can be seen, the variance decreases O(n−1) in the size of the values of the hash
function. This means that we have an O(n−

1
2 ) convergence asymptotically to the expected

value of the kernel.

Information Loss One of the key fears of using hashing in machine learning is that hash
collisions harm performance. For example, the well-known birthday paradox shows that if
the hash function maps into a space of size n then with O(n

1
2 ) features a collision is likely.

When a collision occurs, information is lost, which may reduce the achievable performance
for a predictor.

Definition 1 (Information Loss) A hash function h causes information loss on a distribu-
tion D with a loss function L if the expected minimum loss before hashing is less than the
expected minimum loss after hashing:

min
f

E
(x,y)∼D

[L(f(x), y))] < min
g

E
(x,y)∼D

[L(g(h(x)), y))]

Redundancy in features is very helpful in avoiding information loss. The redundancy
can be explicit or systemic such as might be expected with a bag-of-words or substring
representation. In the following we analyze explicit redundancy where a feature is mapped
to two or more values in the space of size n. This can be implemented with a hash function
by (for example) appending the string i ∈ {1, . . . , c} to feature f and then computing the
hash of f ◦ i for the i-th duplicate.

The essential observation is that the information in a feature is only lost if all duplicates
of the feature collide with other features. Given this observation, it’s unsurprising that
increasing the size of n by a constant multiple c and duplicating features c times makes
collisions with all features unlikely. It’s perhaps more surprising that when keeping the size
of n constant and duplicating features, the probability of information loss can go down.

Theorem 2 For a random function mapping l features duplicated c times into a space of
size n, for all loss functions L and and distributions D on n features, the probability (over
the random function) of no information loss is:

≥ 1− l[1− (1− c/n)c + (lc/n)c]



.

To see the implications consider l = 105 and n = 108. Without duplication, a birthday
paradox collision is virtually certain. However, if c = 2, the probability of information loss
is bounded by about 0.404, and for c = 3 it drops to about 0.0117.
Proof The proof is essentially a counting argument with consideration of the fact that we
are dealing with a hash function rather than a random variable. It is structurally similar
to the proof for a Bloom filter (Bloom, 1970), because the essential question we address is:
“What is a lower bound on the probability that all features have one duplicate not colliding
with any other feature?”

Fix a feature f . We’ll argue about the probability that all c duplicates of f collide with
other features.

For feature duplicate i, let hi = h(f ◦ i). The probability that hi = h(f ′ ◦ i′) for some
other feature f ′ ◦ i′ is bounded by (l−1)c/n because the probability for each other mapping
of a collision is 1/n by the assumption that h is a random function, and the union bound
applied to the (l − 1)c mappings of other features yields (l − 1)c/n. Note that we do not
care about a collision of two duplicates of the same feature, because the feature value is
preserved.

The probability that all duplicates 1 ≤ i ≤ c collide with another feature is bounded by
(lc/n)c + 1 − (1 − c/n)c. To see this, let c′ ≤ c be the number of distinct duplicates of f

after collisions. The probability of a collision with the first of these is bounded by (l−1)c
n .

Conditioned on this collision, the probability of the next collision is at most (l−1)c−1
n−1 , where

1 is subtracted because the first location is fixed. Similarly, for the ith duplicate, the
probability is (l−1)c−(i−1)

n−(i−1) . We can upper bound each term as lc
n , implying the probability of

all c′ duplicates colliding with other features is at most (lc/n)c′
. The probability that c′ = c

is the probability that none of the duplicates of f collide, which is (n−1)!
nc(n−c−1)! ≥ ((n−c)/n)c.

If we pessimistically assume that c′ < c implies that every duplicate collides with another
feature, then

P(coll) ≤ P(coll|c′ = c) P(c′ = c) + P(c′ 6= c)
≤ (lc/n)c + 1− ((l − c)/l)c.

Simplification gives (lc/n)c + 1 − (1 − c/n)c as claimed. Taking a union bound over all l
features, we get that the probability any feature has all duplicates collide is bounded by
l[1− (1− c/n)c + (lc/n)c].

Rate of Convergence As a first step note that any convergence bound only depends
logarithmically on the size of the kernel matrix.

Theorem 3 Assume that the probability of deviation between the hash kernel and its ex-
pected value is bounded by an exponential inequality via

P
[∣∣∣k̄h(x, x′)−Eh

[
k̄h(x, x′)

]∣∣∣ > ε
]
≤ c exp(−c′ε2n)



for some constants c, c′ depending on the size of the hash and the kernel used. In this case
the error ε arising from ensuring the above inequality for m observations and M classes
(for a joint feature map φ(x, y)) is bounded by (with c′′ := − log c− 2 log 2)

ε ≤
√

(2 log(m + 1) + 2 log(M + 1)− log δ − c′′)/c′.

Proof [sketch only] Apply the union bound to the kernel matrix of size (mM)2, that is,
to all m(m + 1)M(M + 1)/4 unique elements. Taking logs on both sides and solving for ε
yields the result.

To obtain an exponential bound on the probability of deviation note that while each coordi-
nate of the hashed feature is identically distributed, the set of features is only exchangeable
but not independent. Although the effect is small, this precludes a direct application of
Chernoff bounds.

Using the variance calculation, Chebyshev’s inequality gives bounds on the probability of
large deviation by ε of the form O(n−1ε−2), albeit not an exponential inequality. Bounds for
exchangeable random variables, in particular (Chatterjee, 2005, Theorem 3.3), can be used
to obtain an exponential inequality in ε of the form required by Theorem 3, albeit without
providing the desired dependency on n. We conjecture that a bound providing both scaling
behavior exists (and our conjecture is supported by our experimental findings). This is
subject of future work.

Generalization Bound The hash kernel approximates the original kernel by big storage
and computation saving. An interesting question is whether the generalization bound on
the hash kernel will be much worse than the bound obtained on the original kernel.

Theorem 4 (Generalization Bound) For binary class SVM, let K̄ =
〈
φ̄(x), φ̄(x′)

〉
,K =

〈φ(x), φ(x′)〉 be the hash kernel matrix and original kernel matrix, let the training set
S = {(x1, y1), . . . , (xM , yM )} be drawn independently according to a probability distribution
D from X × Y and fix δ ∈ (0, 1). Assume there exists b ≤ 0 such that b ≥ tr(K̄) − tr(K).
Then with probability at least 1− δ over samples of size M we have

P (y 6= f(x,w)) ≤ 1
M

M∑
m=1

ξm +
4
M

√
tr(K̄) + 3

√
ln(2

δ )
2M

, (9)

≤ 1
M

M∑
m=1

ξm +
4
M

√
tr(K) +

4
M

√
b + 3

√
ln(2

δ )
2M

, (10)

where ξm = max{0,4(ym, ym
∗ )−

〈
w, φ̄(xm, ym)

〉
+

〈
w, φ̄(xm, ym

∗ )
〉
}

Proof [sketch] Using Rademacher complexity we can get inequality 9. Using the inequality
tr(K̄) ≤ b + tr(K) ≤ (

√
b +

√
tr(K))2 in inequality 9 gives inequality 10. So the theorem

holds.

The approximation quality depends on the both the feature and the hash collision. From
the definition of hash kernel (see eq. 6), the feature entries with the same hash value will
add up and map to a new feature entry indexed by the hash value. The higher collision
of the hash has, the more entries will be added up. If the feature is sparse, the added up



entries are mostly zeros. So the difference of the maximum and the sum of the entries is
reasonably small. In this case, the hash kernel gives a good approximation of the original
kernel, so b is reasonably small. Thus the generalization error does not increase much as
the collision increases. This is verified in the experiment section in Table 4 — increasing
the collision rate from 0.82% to 94.31% only slightly worsens the test error (from 6.096%
to 5.586%).

Moreover, Theorem 4 shows us the generalization bounds on the hash kernel and the
original kernel only differ by O(M−1). This means that when our dataset is large, the
difference can be ignored.

5. Graphlet Kernels

Denote by G a graph with vertices V (G) and edges E(G). Several methods have been
proposed to perform classification on such graphs. Most recently, Przulj (2007) proposed
to use the distribution over graphlets, i.e. subgraphs, as a characteristic property of the
graph. Unfortunately, brute force evaluation does not allow calculation of the statistics for
graphlets of size more than 5, since the cost for exact computation scales exponentially in
the graphlet size.

In the following we show that sampling and hashing can be used to make the analysis
of larger subgraphs tractable in practice. For this denote by S ⊆ G an induced subgraph of
G, obtained by restricting ourselves to only V (S) ⊆ V (G) vertices of G and let #S(G) be
the number of times S occurs in G. This suggests that the feature map G → φ(G), where
φS(G) = #S(G) will induce a useful kernel: adding or removing an edge (i, j) only changes
the properties of the subgraphs using the pair (i, j) as part of their vertices.

5.1 Counting and Sampling

Depending on the application, the distribution over the counts of subgraphs may be signifi-
cantly skewed. For instance, in sparse graphs we expect the fully disconnected subgraphs to
be considerably overrepresented. Likewise, whenever we are dealing with almost complete
graphs, the distribution may be skewed towards the other end (i.e. most subgraphs will
be complete). To deal with this, we impose weights β(k) on subgraphs containing k edges
|E(S)|.

To deal with the computational complexity issue simultaneously with the issue of reweight-
ing the graphs S we simply replace explicit counting with sampling from the distribution

P(S|G) = c(G)β(|E(S)|) (11)

where c(G) is a normalization constant. Samples from P(S|G) can be obtained by a Markov-
Chain Monte Carlo approach.

Lemma 5 The following MCMC sampling procedure has the stationary distribution (11).

1. Choose a random vertex, say i, of S uniformly.
2. Add a vertex j from G\Si to Si with probability c(Si, G)β(|E(Sij)|).

Here Si denotes the subgraph obtained by removing vertex i from S, and Sij is the result of
adding vertex j to Si.



Note that sampling over j is easy: all vertices of G which do not share an edge with S\i
occur with the same probability. All others depend only on the number of joining edges.
This allows for easy computation of the normalization c(Si, G).
Proof We may encode the sampling rule via

T (Sij |S, G) =
1
k
c(Si, G)β(|E(Sij)|) (12)

where c(Si, G) is a suitable normalization constant. Next we show that T satisfies the
balance equations and therefore can be used as a proposal distribution with acceptance
probability 1.

T (Sij |S, G) P(S)
T (S|Sij , G) P(Sij)

=
k−1c(Si, G)β(|E(Sij)|)c(G)β(|E(S)|)

k−1c(Sij,j , G)β(|E(Sij,ji)|)c(G)β(|E(Sij)|)
= 1

This follows since Sij,j = Si and likewise Sij,ji = S. That is, adding and removing the same
vertex leaves a graph unchanged.

In summary, we obtain an algorithm which will readily draw samples S from P(S|G) to
characterize G.

5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random variables are de-
pendent on each other. This means that we cannot simply appeal to Chernoff bounds when
it comes to averaging. Before discussing hashing we briefly discuss averages of dependent
random variables:

Definition 6 (Bernoulli Mixing) Denote by Z a stochastic process indexed by t ∈ Z
with probability measure P and let Σn be the σ-algebra on Zt with t ∈ Z\1, . . . , n− 1.
Moreover, denote by P− and P+ the probability measures on the negative and positive indices
t respectively. The mixing coefficient β is

β(n, PX) := sup
A∈Σn

∣∣∣P(A)− P−×P+(A)
∣∣∣. (13)

If limn→∞β(n, Pz) = 0 we call Z to be β-mixing.

That is, β(n, PX) measures how much dependence a sequence has when cutting out a
segment of length n. Nobel and Dembo (1993) show how such mixing processes can be
related to iid observations.

Theorem 7 Assume that P is β-mixing. Denote by P∗ the product measure obtained from
. . .Pt×Pt+1 . . . Moreover, denote by Σl,n the σ-algebra on Zn, Z2n, . . . , Zln. Then the fol-
lowing holds:

sup
A∈Σl,n

|P(A)− P∗(A)| ≤ lβ(n, P). (14)



This allows us to obtain bounds for expectations of variables drawn from P rather than P∗.

Theorem 8 Let P be a distribution over a domain X and denote by φ : X → H a feature
map into a Hilbert Space with 〈φ(x), φ(x′)〉 ∈ [0, 1]. Moreover, assume that there is a β-
mixing MCMC sampler of P with distribution PMC from which we draw l observations xin

with an interleave of n rather than sampling from P directly. Averages with respect to PMC

satisfy the following with probability at least 1− δ:

∥∥∥ E
x∼P(x)

[φ(x)]− 1
l

l∑
i=1

φ(xin)
∥∥∥ ≤ lβ(n, PMC) +

2 +
√

log 2
δ√

l

Proof Theorem 7, the bound on ‖φ(x)‖, and the triangle inequality imply that the expec-
tations with respect to PMC and P∗ only differ by lβ. This establishes the first term of the
bound. The second term is given by a uniform convergence result in Hilbert Spaces from
Altun and Smola (2006).

Hence, sampling from a MCMC sampler for the purpose of approximating inner products
is sound, provided that we only take sufficiently independent samples (i.e. a large enough
n) into account. The translation of Theorem 8 into bounds on inner products is straight-
forward, since

| 〈x, y〉 −
〈
x′, y′

〉
| (15)

≤
∥∥x− x′

∥∥ ‖y‖+
∥∥y − y′

∥∥ ‖x‖+
∥∥x− x′

∥∥∥∥y − y′
∥∥ .

5.3 Hashing and Subgraph Isomorphism

Sampling from the distribution over subgraphs S ∈ G has two serious problems in practice
which we will address in the following: firstly, there are several graphs which are isomorphic
to each other. This needs to be addressed with a graph isomorphism tester, such as Nauty
McKay (1984). For graphs up to size 12 this is a very effective method. Nauty works by
constructing a lookup table to match isomorphic objects.

However, even after the graph isomorphism mapping we are still left with a sizable
number of distinct objects. This is where a hash map on data streams comes in handy. It
obviates the need to store any intermediate results, such as the graphs S or their unique
representations obtained from Nauty. Finally, we combine the convergence bounds from
Theorem 8 with the guarantees available for hash kernels to obtain the approximate graph
kernel.

Note that the two randomizations have very different purposes: the sampling over
graphlets is done as a way to approximate the extraction of features whereas the com-
pression via hashing is carried out to ensure that the representation is computationally
efficient.

6. Experiments

To test the efficacy of our approach we applied hashing to the following problems: first we
used it for classification on the Reuters RCV1 dataset as it has a relatively large feature



Datasets #Train #Test #Labels
RCV1 781,265 23,149 2
Dmoz L2 4,466,703 138,146 575
Dmoz L3 4,460,273 137,924 7,100

Table 1: Text datasets. #X denotes the number of observations in X.

Algorithm Pre TrainTest Error %
BSGD 303.60s 10.38s 6.02
VW 303.60s 87.63s 5.39
VWC 303.60s 5.15s 5.39
HK 0s 25.16s 5.60

Table 2: Runtime and Error on RCV1. BSGD: Bottou’s SGD. VW: Vowpal Wabbit without
cache. VWC: Vowpal Wabbit using cache file. HK: hash kernel with feature dimension 220.
Pre: preprocessing time. TrainTest: time to load data, train and test the model. Error:
misclassification rate. Apart from the efficacy of hashing operation itself, the gain of speed
is also due to a multi-core implementation — hash kernel uses 4-cores to access the disc
for online hash feature generation. For learning and testing evaluation, all algorithms use
single-core.

dimensionality. Secondly, we applied it to the DMOZ ontology of topics of webpages1 where
the number of topics is high. The third experiment — Biochemistry and Bioinformatics
Graph Classification uses our hashing scheme, which makes comparing all possible subgraph
pairs tractable, to compare graphs Vishwanathan et al. (2007a). On publicly available
datasets like MUTAG and PTC as well as on the biologically inspired dataset DD used by
Vishwanathan et al. (2007a), our method achieves the best known accuracy.

In both RCV1 and Dmoz, we use linear kernel SVM with stochastic gradient descent
(SGD) as the workhorse. We apply our hash kernels and random projection (Achlioptas,
2003) to the SGD linear SVM. We don’t apply the approach in Rahimi and Recht (2008)
since it requires a shift-invariant kernel k(x, y) = k(x−y), such as RBF kernel, which is not
applicable in this case. In the third experiment, existing randomization approaches are not
applicable since enumerating all possible subgraphs is intractable. Instead we compare hash
kernel with existing graph kernels: random walk kernel, shortest path kernel and graphlet
kernel (see Borgwardt et al. (2007)).

6.1 Reuters Articles Categorization

We use the Reuters RCV1 binary classification dataset (Lewis et al., 2004). 781,265 articles
are used for training by stochastic gradient descent (SGD) and 23,149 articles are used for
testing. Conventionally one would build a bag of words representation first and calculate
exact term frequency / inverse document frequency (TF-IDF) counts from the contents
of each article as features. The problem is that the TF calculation needs to maintain a
very large dictionary throughout the whole process. Moreover, it is impossible to extract

1. Dmoz L2 denotes non-parent topic data in the top 2 levels of the topic tree and Dmoz L3 denotes
non-parent topic data in the top 3 levels of the topic tree.



Algorithm Dim Pre TrainTest orgTrainSize newTrainSize Error %
28 748.30s 210.23s 423.29Mb 1393.65Mb 29.35%

RP 29 1079.30s 393.46s 423.29Mb 2862.90Mb 25.08%
210 1717.30s 860.95s 423.29Mb 5858.48Mb 19.86%
28 0s 22.82s NA NA 17.00%

HK 29 0s 24.19s NA NA 12.32%
210 0s 24.41s NA NA 9.93%

Table 3: Hash kernel vs. random projections with various feature dimensionalities on RCV1.
RP: random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension of the new
features. Pre: preprocessing time. TrainTest: time to load data, train and test the model.
orgTrainSize: compressed original training feature file size. newTrainSize: compressed new
training feature file size. Error: misclassification rate. NA: not applicable. In hash kernel
there is no preprocess step, so there is no original/new feature files. Features for hash
kernel are built up online via accessing the string on disc. The disc access time is taken
into account in TrainTest. Note that the TrainTest for random projection time increases
as the new feature dimension increases, whereas for hash kernel the TrainTest is almost
independent of the feature dimensionality.

Dim #Unique Collision % Error %
224 285614 0.82 5.586
222 278238 3.38 5.655
220 251910 12.52 5.594
218 174776 39.31 5.655
216 64758 77.51 5.763
214 16383 94.31 6.096

Table 4: Influence of new dimension on Reuters (RCV1) on collision rates (reported for
both training and test set combined) and error rates. Note that there is no noticeable
performance degradation even for a 40% collision rate.

features online since the entire vocabulary dictionary is usually unobserved during training.
Another disadvantage is that calculating exact IDF requires us to preprocess all articles in
a first pass. This is not possible as articles such as news may vary daily.

However, it suffices to compute TF and IDF approximately as follows: using hash
features, we no longer require building the bag of words. Every word produces a hash key
which is the dimension index of the word. The frequency is recorded in the dimension
index of its hash key. Therefore, every article has a frequency count vector as TF. This
TF is a much denser vector which requires no knowledge of the vocabulary. IDF can be
approximated by scanning a smaller part of the training set.

A quantile-quantile plot in Figure 1 shows that this approximation is justified — the
dependency between the statistics on the subset (200k articles) and the full training set
(800k articles) is perfectly linear.
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Figure 1: Quantile-quantile plot of the DF counts computed on a subset (200k documents)
and the full dataset (800k documents). DF(t) is the number of documents in a collection
containing word t.

We compare the hash kernel with Leon Bottou’s Stochastic Gradient Descent SVM2

(BSGD), Vowpal Wabbit (Langford et al., 2007) (VW) and Random Projections (RP)
Achlioptas (2003). Our hash scheme is generating features online. BSGD is generating
features offline and learning them online. VW uses BSGD’s preprocessed features and
creates further features online. Caching speeds up VW considerably. However, it requires
one run of the original VW code for this purpose. RP uses BSGD’s preprocessed features

2. http://leon.bottou.org/projects/sgd



and then creates the new projected lower dimension features. Then it uses BSGD for
learning and testing. We compare these algorithms on RCV1 in Table 2. Table 2. RP is
not included in this table because it would be intractable to run it with the same feature
dimensionality as HK for a fair comparison. As can be seen, the preprocessing time of
BSGD and VW is considerably longer compared to the time for training and testing, due to
the TF-IDF calculation which is carried out offline. For a fair comparison, we measure the
time for feature loading, training and testing together. It can also be seen that the speed of
online feature generation is considerable compared to disk access. Table 2 shows that the
test errors for hash kernel, BSGD and VW are competitive.

In table 3 we compare hash kernel to RP with different feature dimensions. As we can
see, the error reduces as the new feature dimension increases. However, the error of hash
kernel is always much smaller (by about 10%) than RP given the same new dimension. An
interesting thing is that the new feature file created after applying RP is much bigger than
the original one. This is because the projection maps the original sparse feature to a dense
feature. For example, when the feature dimension is 210, the compressed new feature file
size is already 5.8G. Hash kernel is much more efficient than RP in terms of speed, since
to compute a hash feature one requires only O(dnz) hashing operations, where dnz is the
number of non-zero entries. To compute a RP feature one requires O(dn) operations, where
d is the original feature dimension and and n is the new feature dimension. And with RP
the new feature is always dense even when n is big, which further increases the learning and
testing runtime. When dnz � d such as in text process, the difference is significant. This
is verified in our experiment (see in Table 3). For example, hash kernel (including Pre and
TrainTest) with 210 feature size is over 100 times faster than RP.

Furthermore, we investigate the influence of the new feature dimension on the misclassi-
fication rate. As can be seen in Table 4, when the feature dimension decreases, the collision
and the error rate increase. In particular, a 224 dimension causes almost no collisions.
Nonetheless, a 218 dimension which has almost 40% collisions performs equally well on the
problem. This leads to rather memory-efficient implementations.

6.2 Dmoz Websites Multiclass Classification

In a second experiment we perform topic categorization using the DMOZ topic ontology.
The task is to recognize the topic of websites given the short descriptions provided on the
webpages. To simplify things we categorize only the leaf nodes (Top two levels: L2 or Top
three levels: L3) as a flat classifier (the hierarchy could be easily taken into account by
adding hashed features for each part of the path in the tree). This leaves us with 575 leaf
topics on L2 and with 7100 leaf topics on L3.

Conventionally, assuming M classes and l features, training M different parameter vec-
tors w requires O(Ml) storage. This is infeasible for massively multiclass applications.
However, by hashing data and labels jointly we are able to obtain an efficient joint repre-
sentation which makes the implementation computationally possible.

As can be seen in Table 5 joint hashing of features and labels is very attractive in items
of memory usage and in many cases is necessary to make large multiclass categorization
computationally feasible at all (naive online SVM ran out of memory). In particular, hashing
features only produces worse results than joint hashing of labels and features. This is likely



HLF (228) HLF (224) HF no hash U base P base
error mem error mem error mem mem error error

L2 30.12 2G 30.71 0.125G 31.28 2.25G (219) 7.85G 99.83 85.05
L3 52.10 2G 53.36 0.125G 51.47 1.73G (215) 96.95G 99.99 86.83

Table 5: Misclassification and memory footprint of hashing and baseline methods on DMOZ.
HLF: joint hashing of labels and features. HF: hash features only. no hash: direct model
(not implemented as too large, hence only memory estimates — we have 1,832,704 unique
words). U base: baseline of uniform classifier. P base: baseline of majority vote. mem:
memory used for the model. Note: the memory footprint in HLF is essentially independent
of the number of classes used.

HLF KNN Kmeans
228 224 S= 3% 6% 9% S= 3% 6% 9%

L2 69.88 69.29 50.23 52.59 53.81 42.29 42.96 42.76
L3 47.90 46.64 30.93 32.67 33.71 31.63 31.56 31.53

Table 6: Accuracy comparison of hashing, KNN and Kmeans. HLF: joint hashing of labels
and features. KNN: apply K Nearest Neighbor on sampled training set as search set.
Kmeans: apply Kmeans on sampled training set to do clustering and then take its majority
class as predicted class. S is the sample size which is the percentage of the entire training
set.
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Figure 2: Test accuracy comparison of KNN and Kmeans on Dmoz with various sample
sizes. Left: results on L2. Right: results on L3. Hash kernel (228) result is used as an upper
bound.

due to the increased collision rate: we need to use a smaller feature dimension to store the
class dependent weight vectors explicitly.

Next we compare hash kernel with K Nearest Neighbor (KNN) and Kmeans. Running
the naive KNN on the entire training set is very slow.3. Hence we introduce sampling to

3. In fact the complexity of KNN is O(N × T ), where N, T are the size of the training set and the testing
set. We estimate the running time for the original KNN, in a batch processing manner ignoring the data
loading time, is roughly 44 days on a PC with a 3.2GHz cpu.



Data Algorithm Dim Pre TrainTest Error %

L2

RP 27 779.98s 1258.12s 82.06%
RP 28 1496.22s 3121.66s 72.66%
RP 29 2914.85s 8734.25s 62.75%
HK 27 0s 165.13s 62.28%
HK 28 0s 165.63s 55.96%
HK 29 0s 174.83s 50.98%

L3

RP 27 794.23s 18054.93s 89.46%
RP 28 1483.71s 38613.51s 84.06%
RP 29 2887.55s 163734.13s 77.25%
HK 27 0s 1573.46s 76.31%
HK 28 0s 1726.67s 71.93%
HK 29 0s 1812.98s 67.18%

Table 7: Hash kernel vs. random projections with various feature dimensionalities on Dmoz.
RP: random projections in Achlioptas (2003). HK: hash kernel. Dim: dimension of the new
features. Pre: preprocessing time — generation of the random projected features. Train-
Test: time to load data, train and test the model. Error: misclassification rate. Note that
the TrainTest time for random projections increases as the new feature dimension increases,
whereas for hash kernel the TrainTest is almost independent of the feature dimensionality.
Moving the dimension from 28 to 29 the increasing in processing time of RP is not linear
— we suspect this is because with 28 the RP model has 256× 7100× 8 ≈ 14MB, which is
small enough to fit in the CPU cache (we are using a 4-cores cpu with a total cache size of
16MB), while with 29 the model has nearly 28MB, no longer fitting in the cache.

KNN. We first sample a subset from the entire training set as search set and then do KNN
classification. To match the scheme of KNN, we use sampling in Kmeans too. Again we
sample from the entire training set to do clustering. The number of clusters is the minimal
number of classes which have at least 90% of the documents. Each test example is assigned
to one of the clusters, and we take the majority class of the cluster as the predicted label
of the test example. The accuracy plot in Figure 2 shows that in both Dmoz L2 and L3,
KNN and Kmeans with various sample sizes get test accuracies of 30% to 20% off than
the upper bound accuracy achieved by hash kernel. The trend of the KNN and Kmeans
accuracy curve suggests that the bigger the sample size is, the less accuracy increment can
be achieved by increasing it. A numerical result with selected sample sizes is reported in
Table 6.

We also compare hash kernel with RP with various feature dimensionality on Dmoz.
Here RP generates the random projected feature first and then does online learning and
testing. It uses the same 4-cores implementation as hash kernel does. The numerical result
with selected dimensionalities is in Table 7. It can be seen that hash kernel is not only
much faster but also has much smaller error than RP given the same feature dimension.
Note that both hash kernel and RP reduce the error as they increase the feature dimension.
However, RP can’t achieve competitive error to what hash kernel has in Table 5, simply
because with large feature dimension RP is too slow — the estimated run time for RP with
dimension 219 on dmoz L3 is 2000 days.
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Figure 3: Left: results on L2. Right: results on L3. Top: frequency counts for topics as
reported on the training set (the test set distribution is virtually identical). We see an
exponential decay in counts. Bottom: log-counts and error probabilities on the test set.
Note that the error is reasonably evenly distributed among the size of the classes (besides
a number of near empty classes which are learned perfectly).

Furthermore we investigate whether such a good misclassification rate is obtained by
predicting well only on a few dominant topics. We reorder the topic histogram in accor-
dance to ascending error rate. Figure 3 shows that hash kernel does very well on the
first one hundred topics. They correspond to easy categories such as language related sets
”World/Italiano”,”World/Japanese”,”World/Deutsch”.

6.3 Biochemistry and Bioinformatics Graph Classification

For the final experiment we work with graphs. The benchmark datasets we used here contain
three real-world datasets: two molecular compounds datasets, (Debnath et al., 1991) and
PTC (Toivonen et al., 2003), and a dataset for protein function prediction task (DD) from
Dobson and Doig (2003). In this work we used the unlabeled version of these graphs, see
e.g. Borgwardt et al. (2007).

All these datasets are made of sparse graphs. To capture the structure of the graphs,
we sampled connected subgraphs with varying number of nodes, from n = 4 to n = 9.
We used graph isomorphism techniques, implemented in Nauty McKay (1984) for getting a



Datasets RW SP GKS GK HK HKF
MUTAG 0.719 0.813 0.819 0.822 0.855 0.865
PTC 0.554 0.554 0.594 0.597 0.606 0.635
DD >24h >24h 0.745 >24h 0.799 0.841

Table 8: Classification accuracy on graph benchmark datasets. RW: random walk kernel,
SP: shortest path kernel, GKS = graphlet kernel sampling 8497 graphlets, GK: graphlet
kernel enumerating all graphlets exhaustively, HK: hash kernel, HKF: hash kernel with
feature selection. ’>24h’ means computation did not finish within 24 hours.

Feature All Selection
STATS ACC AUC ACC AUC
MUTAG 0.855 0.93 0.865 0.912
PTC 0.606 0.627 0.635 0.670
DD 0.799 0.81 0.841 0.918

Table 9: Non feature selection vs feature selection for hash kernel. All: all features. Selec-
tion: feature selection; ACC: accuracy; AUC: Area under ROC.

canonically-labeled isomorph of each sampled subgraph. The feature vector of each example
(graph) is composed of the number of times each canonical isomorph was sampled. Each
graph was sampled 10000 times for each of n = 4, 5 . . . 9. Note that the number of connected
unlabeled graphs grows exponentially fast with the number of nodes, so the sampling is
extremely sparse for large values of n. For this reason we normalized the counts so that for
each dataset each feature of φ(x) satisfies 1 ≥ φ(x) ≥ 0.

We compare the proposed hash kernel (with/without feature selection) with random
walk kernel, shortest path kernel and graphlet kernel on the benchmark datasets. From
Table 8 we can see that the hash Kernel even without feature selection still significantly
outperforms the other three kernels in terms of classification accuracy over all three bench-
mark datasets.

The dimensionality of the canonical isomorph representation is quite high and many
features are extremely sparse, a feature selection step was taken that removed features
suspected as non-informative. To this end, each feature was scored by the absolute vale of
its correlation with the target. Only features with scores above median were retained. As
can be seen in Table 9 feature selection on hash kernel can furthermore improve the test
accuracy and area under ROC.

7. Discussion

In this paper we showed that hashing is a computationally attractive technique which allows
one to approximate kernels for very high dimensional settings efficiently by means of a sparse
projection into a lower dimensional space. In particular for multiclass categorization this
makes all the difference in terms of being able to implement problems with thousands of
classes in practice on large amounts of data and features.
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