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In this supplementary material, we provide more related work, more details of structured output tracking and online latent
structural learning for visual tracking, and more experimental results (both qualitative and quantitative). The experimental
results includes demonstration videos, more quantitative results of our tracking algorithm with and without parts in Tab. 2
and Fig. 1, more quantitative comparisons of different part initialisations in Tab. 3 and Fig. 2, visual tracking result on
representative frames in Fig. 3 to Fig. 15, and more CLE and VOR plots in Fig. 16 and Fig. 17.

1. More related work
Here we provide more related work which may not fit in the main text. Shu et al. [?] propose a part-based multiple-person

tracker to handle partial occlusions. They only consider three possible subsets of parts: head only, upper body parts, and all
body parts, which restricts its application to our general object tracking case where most objects are not human. Also data
association plays an important role in their case, whereas it is not applicable to our single object tracking case. Similarly,
Yang and Nevatia [?] propose a part-based multiple-person tracker, where they use rigid parts to model human: 1 part for
head, 6 parts for upper body and 8 parts for lower body. Instead of learning the locations of the parts, they fix the locations,
and focus on learning data association (as for multiple-person tracking). Overall, both [?] and [?] use parts specifically
designed for human bodies, and they much emphasise on data association for multiple-person tracking, thus they are not
applicable to our single general object tracking.

2. Demonstration videos
We show all tracking results of our tracker and competing trackers over all frames on thirteen sequences. In our experi-

ments, we ran nine competing trackers, for clarity only the results of five trackers are marked in the videos. We also marked
the part boxes (with index number) of our tracker on the demonstration videos.

3. More details of online latent structural learning for visual tracking
In this section, we show more details of visual tracking via online latent structural learning. In Section 3.1, we will

show the overall procedure of “tracking-by-detection” approach with structured output learning, and in Section 3.2, we will
describe the latent structural SVM for visual tracking and how to get the objective function for online learning shown in the
main text of this paper.

3.1. Tracking-by-detection with structured output learning

The proposed algorithm is a novel tracking-by-detection approach to track generic objects. To give readers a better
understanding of this kind of approach, we describe the overall procedure of visual tracking with structured output learning
in this section. There are several papers related to structured output tracking. Hare et al. [?] applied structured learning
to online visual tracking, which builds upon its previous successful application to object detection [?]. Yao et al. [?] use
weighted online structural learning to deal with the inevitable changes in target appearance over time.

A structural tracking-by-detection approach maintain a structured output classifier trained online to distinguish the target
object from the background. During tracking, the prediction of object location is obtained by the combination of the object
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Experimental sequence Demonstration video of tracking result
faceocc1 faceocc1.mp4
faceocc2 faceocc2.mp4
threemen threemen.mp4

fskater fskater.mp4
dollar dollar.mp4
david david.mp4
trellis trellis.mp4
board board.mp4

sylvester sylvester.mp4
girl girl.mp4
coke coke.mp4
tiger1 tiger1.mp4
tiger2 tiger2.mp4

Table 1. The illustration of demonstration videos.

location estimated in previous frame and the offset of object location in current frame, where the offset is estimated by
searching for the maximum classification score of candidate offsets using the structured output classifier.

Suppose at the t-th frame, the object location is represented by bounding boxBt = (ct, rt, wt, ht), where ct, rt are the col-
umn and row coordinates of the upper-left corner, andwt, ht are the width and height. The offset is yt = (∆ct,∆rt,∆wt,∆ht) ∈
Y. The bounding box on the target object is given in the 1st frame of the video, and the tracker is then required to track the
object from the 2nd frame to the end of the video. Given the t-th frame xt ∈ X, and the bounding box Bt−1 in the (t− 1)-th
frame, the bounding box Bt in the t-th frame can be obtained via

Bt = Bt−1 + y∗t , y∗t = argmax
y∈Y

f(xt,y). (1)

Here f : X×Y→ R is the discriminant function, it can be learned via structured SVM [?] with y 6= yt generated randomly
in the vicinity of the true yt by optimising

min
w

1

2
||w||2 + C

T∑
t=1

ξt (2)

s.t. ∀t : ξt ≥ 0 ;

∀t,y 6= yt : 〈w,Ψ(xt,yt)〉 − 〈w,Ψ(xt,y)〉 ≥ ∆(yt,y)− ξt,

where the label cost is

∆(yt,y) = 1− (Bt−1 + yt)
⋂

(Bt−1 + y)

(Bt−1 + yt)
⋃

(Bt−1 + y)
, (3)

which was introduced in [?] to measure the VOC bounding box overlap ratio. In practice, y’s are uniformly sampled in the
vicinity of the yt in [?].

As mentioned above, visual tracking is an online process which deals with a dynamic stream data. It is necessary for
tracking algorithm to maintain and update the parameter for adapting new data. In [?, ?], they updated the dual variables
online following the work of [?, ?]. Following the formulation in [?], Eq. (2) can be converted as:

max
β
−
∑
t,y

∆(y,yt)β
y
t −

1

2

∑
t,y,s,ȳ

βy
t β

ȳ
s k((xt,y), (xs, ȳ)) (4)

s.t. ∀t, ∀y : βy
t ≤ δ(y,yt)C;

∀t :
∑
y

βy
t = 0,



Algorithm 1: Tracking-by-detection with structured output learning
Input: C, searching radius s for tracking, searching radius r for training, the bounding box of target object in the first

frame B1, the frame set {x1, · · · ,xT }
Output: B1, · · · , BT

1 Initialisation
2 S0 = ∅, B0 = B1;
3 for t = 1, 2, · · · , T do
4 Estimate the bounding box Bt

5 Bt = Bt−1 + y∗t ;
6 y∗t = argmaxy∈Y f(xt,y), where Y = {(∆ct,∆rt, 0, 0)|(∆ct)2 + (∆rt)

2 < s2}, the offsets ys are sampled via
searching Y exhaustively;

7 Update the dual variables and the set of support vectors St

8 Sample a set of example pairs {xt,yt,i}Ni=1, where yt,i is sampled via searching
{(∆ct,∆rt, 0, 0)|(∆ct)2 + (∆rt)

2 < r2} on a polar grid.
9 Perform OLaRank algorithm on {xt,yt,i}Ni=1 using St−1 and the dual variables estimated in the (t− 1)-th frame.

10 end

where δ(y,yt) is 1 when y = yt and 0 otherwise, and k(·, ·) is the kernel function. The discriminant function f becomes

f(xt,y) =
∑
s,ȳ

βȳ
s k((xs, ȳ), (xt,y)). (5)

OLaRank algorithm introduced in [?] is used to online update the dual variables and the set of support vectors St at the
t-th frame, where support vectors refers to those pairs (xt, y) for which βy

t 6= 0. OLaRank is an SMO-style [?] optimisation
method, it use three basic operations. At each iteration, the OLaRank algorithm perform one PROCESSNEW step. Then
perform ten REPROCESS step, which is the combination of one PROCESSOLD step followed by ten OPTIMIZE steps. We
refer the readers to [?, ?] for more details of OLaRank algorithm.

By using the above-mentioned online structured output learning, a visual tracking algorithm can be obtained. We assume
B0 = B1 i.e. y1 = (0, 0, 0, 0) and sample some y 6= y1. The sampled ys, and y1, are provided to our online learner to
update the dual variables and the set of support vectors S1. We then use this dual variables to predict y2 to obtain tracking
result for the 2nd frame i.e. the bounding box B2. We then take the predicted y2 as the true label, sample y 6= y2, and feed
them into the online learner to update dual variables and S2, and so on. Algorithm 1 shows the complete tracking procedure.

3.2. Latent structural SVM in primal form

In this section, we show how to get the unconstrained form of latent pegasos defined by Eq. (8) in the main text of this
paper. We use zt = (z1

t , · · · , zMt ) ∈ Z to represent the offsets of M part boxes at the t-th frame. zt can be treat as a latent
variable, which is not provided by user. Here we use the notation in the main text of this paper. Latent variables have been
used with SVMs previously [?, ?, ?] in a batch learning scenario.

We incorporate latent variables into structural SVM, and learn the discriminant function f : X×Y×Z → R defined by
Eq. (3) in the main text via latent structural SVM. Since visual tracking is an online process, we propose latent pegasos to
allow the use of latent variables in an online manner. Suppose we have T many frames, and we sample N many offsets at
each frame i.e. {yt,i 6= yt}Ni=1, the discriminant function f can be learnt via:

min
w

λ

2
||w||2 +

1

TN

T∑
t=1

N∑
i=1

ξt,i (6)

s.t. ∀t, i : ξt,i ≥ 0,

∀t, i,max
z
f(xt,yt, z)−max

z′
f(xt,yt,i, z

′) ≥ ∆(yt,yt,i)− ξt,i.

However, the above is a batch learning process; whereas in tracking we need an online learning algorithm. Same as typical
online learning settings in [?], at each iteration/frame, the algorithm only has access to the samples from the current frame.
Denote wt the parameter that predicts yt for the t-th frame i.e. yt = argmaxy maxz f(xt,y, z;wt), we sample offsets



{yt,i 6= yt}Ni=1 near the predicted yt. The online learning algorithm is supposed to update the parameter wt+1. By converting
Eq. (6) at t-th frame into unconstrained form, we have the following (mini-batch) online learning objective similar to [?],

min
w

λ

2
||w||2 +

1

N

N∑
i=1

[
∆(yt,yt,i) + max

z′
〈w,Φ(xt,yt,i, z

′)〉 −max
z
〈w,Φ(xt,yt, z)〉

]
+
. (7)

Eq. (7) is the same as Eq. (8) in the main text of this paper for estimating wt+1 at t-th frame. The proposed online learning
algorithm uses gradient descent to update wt+1 with an appropriate step size ηt as described in the main paper. From Lemma
1 and Lemma 2 in [?], we know that for appropriate step sizes, the online learning method using Eq. (7) as objective has a
well known online regret bound of O(log T ), since the objective function in Eq. (7) is Lipschitz (i.e. bounded (sub)gradient)
and λ-strongly convex.

4. Evaluation of our tracking algorithm with and without part
In this section, we show more results of our tracking algorithm with and without part. Tab. 2 shows the VOC overlap

ratio(VOR), centre location error (CLE) and success rate (SR) of three methods on sequence board, david, sylvester, fskater.
Fig. 1 shows the VOR plots of tracking result on those four sequences.

board david sylvster fskater
VOR CLE SR VOR CLE SR VOR CLE SR VOR CLE SR

Struck Linear 0.59 72.1 0.65 0.36 60.1 0.38 0.66 10.7 0.72 0.73 11.7 0.99
Ours without part 0.63 45.0 0.70 0.40 53.7 0.34 0.70 8.6 0.75 0.68 12.9 0.87
Ours with part 0.83 14.1 0.98 0.81 7.6 1.00 0.76 5.7 0.95 0.81 7.9 1.00

Table 2. Performance of the proposed tracking with/without part and Struck with linear kernel on four sequences.

5. Evaluation of different part initialisations
In this section, we show more results of our tracking algorithm with and different part initialisations. Tab. 2 shows the

VOC overlap ratio(VOR), centre location error (CLE) and success rate (SR) of three methods on sequence sylvester, fskater.
Fig. 1 shows the VOR plots of tracking result on those two sequences.

sylvster fskater
VOR CLE SR VOR CLE SR

Initialise Part Manually 0.76 5.7 0.95 0.81 7.9 1.00
Initialise Part Automatically 0.76 5.8 0.97 0.80 8.0 1.00

Table 3. Performance of the proposed tracking with different part initialisations on two sequences.

6. Qualitative visual tracking results
In this section, we show the qualitative visual tracking results of the competing trackers over several representative frames

of thirteen sequences in Fig. 3 to Fig. 15. The frame index numbers of these representative frames are drawn in the top-left
corner of image.



100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
board

Frame Index

V
O

C
 O

ve
rla

p 
R

at
io

Struck Linear
Ours Without Part
Ours With Part

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1
david

Frame Index

V
O

C
 O

ve
rla

p 
R

at
io

Struck Linear
Ours Without Part
Ours With Part

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sylvester

Frame Index

V
O

C
 O

ve
rla

p 
R

at
io

Struck Linear
Ours Without Part
Ours With Part

20 40 60 80 100 120 140 160
0.4

0.5

0.6

0.7

0.8

0.9

1
fskater

Frame Index

V
O

C
 O

ve
rla

p 
R

at
io

Struck Linear
Ours Without Part
Ours With Part

Figure 1. Evaluation of the proposed tracking with/without part and Struck with linear kernel in VOC overlap ratio plots on four sequences.
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Figure 2. Evaluation of different part initialisations in VOC overlap ratio plots on two sequences.

7. Quantitative Comparison of competing tracking algorithms
In this section, we show the frame-by-frame CLE and VOR plots of eleven tracking algorithms on thirteen sequences in

Fig. 16 and Fig. 17.
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Figure 3. Qualitative visual tracking results of our tracker and competing trackers over representative frames of board sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 4. Qualitative visual tracking results of our tracker and competing trackers over representative frames of david sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 5. Qualitative visual tracking results of our tracker and competing trackers over representative frames of threemen sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 6. Qualitative visual tracking results of our tracker and competing trackers over representative frames of fskater sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 7. Qualitative visual tracking results of our tracker and competing trackers over representative frames of dollar sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 8. Qualitative visual tracking results of our tracker and competing trackers over representative frames of faceocc1 sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 9. Qualitative visual tracking results of our tracker and competing trackers over representative frames of gril sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 10. Qualitative visual tracking results of our tracker and competing trackers over representative frames of trellis sequence. Note that
the number marked on small rectangles represents the index of object parts.
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Figure 11. Qualitative visual tracking results of our tracker and competing trackers over representative frames of faceocc2 sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 12. Qualitative visual tracking results of our tracker and competing trackers over representative frames of sylvester sequence. Note
that the number marked on small rectangles represents the index of object parts.
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Figure 13. Qualitative visual tracking results of our tracker and competing trackers over representative frames of coke sequence.
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Figure 14. Qualitative visual tracking results of our tracker and competing trackers over representative frames of tiger1 sequence.
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Figure 15. Qualitative visual tracking results of our tracker and competing trackers over representative frames of tiger2 sequence.

[7] J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schoelkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.

[8] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient solver for svm. Math.
Program., 127(1):3–30, 2011.

[9] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based multiple-person tracking with partial occlusion
handling. In Proc. CVPR, pages 1815–1821, 2012.

[10] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent
output variables. JMLR, 6:1453–1484, 2005.

[11] B. Yang and R. Nevatia. Online learned discriminative part-based appearance models for multi-human tracking. In
Proc. ECCV, pages 484 – 498, 2012.

[12] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel. Robust tracking with weighted online structured learning.
In Proc. ECCV, 2012.

[13] C. N. J. Yu and T. Joachims. Learning structural SVMs with latent variables. In Proceedings of International Conference
on Machine Learning, pages 1169–1176, 2009.

[14] L. Zhu, Y. Chen, A. L. Yuille, and W. T. Freeman. Latent hierarchical structural learning for object detection. In Proc.
CVPR, pages 1062–1069, 2010.



100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

board

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)
50 100 150 200 250

0

20

40

60

80

100

120

coke

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300 350 400 450
0

50

100

150

200
david

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

faceocc1

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

faceocc2

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

girl

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

200 400 600 800 1000 1200
0

50

100

150

sylvester

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300 350
0

20

40

60

80

100

120

tiger1

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

tiger2

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

trellis

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

fskater

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250
0

50

100

150

threemen

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

dollar

Frame Index

C
en

te
r 

Lo
ca

tio
n 

E
rr

or
 (

pi
xe

l)

Figure 16. Quantitative evaluation of different trackers in centre location error plots on thirteen sequences.
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Figure 17. Quantitative evaluation of different trackers in VOC overlap ratio plots on thirteen sequences.


