
Approximating Minimum Multicuts by

Evolutionary Multi-Objective Algorithms⋆

Frank Neumann1 and Joachim Reichel2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany,
firstname.lastname@mpi-inf.mpg.de

2 Institut für Mathematik, TU Berlin, Germany,
reichel@math.tu-berlin.de

Abstract. It has been shown that simple evolutionary algorithms are
able to solve the minimum cut problem in expected polynomial time
when using a multi-objective model of the problem. In this paper, we
generalize these ideas to the NP-hard minimum multicut problem. Given
a set of k terminal pairs, we prove that evolutionary algorithms in com-
bination with a multi-objective model of the problem are able to obtain
a k-approximation for this problem in expected polynomial time.

1 Introduction

Evolutionary algorithms and other kinds of metaheuristics have become very
popular for solving combinatorial optimization problems. In recent years, a lot
of progress has been made in understanding this kind of algorithms with respect
to their runtime behavior. Most of these results are on classical polynomially
solvable problems such as minimum spanning trees [19] or shortest paths [9,
20]. One goal of such studies on easy problems is to get an understanding how
the heuristics work in order to analyze difficult problems in the future. Later
on, such studies have served as a basis for analyzing evolutionary algorithms on
NP-hard problems [10, 16, 22].

Recently, it has been shown in [17] that the minimum cut problem cannot be
solved by simple single-objective evolutionary algorithms. In contrast to this a
multi-objective approach has been presented which provably solves the problem
in expected polynomial time. The algorithms analyzed in this paper use the
dual problem, i. e., the maximum flow problem, as a subroutine. The goal of
this study was to gain new insights into the behavior of evolutionary algorithms
when considering cutting problems and to express the usefulness of the original
problem and its dualization with respect to the optimization by evolutionary
algorithms. The study carried out in the present paper extends the mentioned
results to the NP-hard minimum multicut problem. In this problem a set of k
pairs of nodes (si, ti), 1 ≤ i ≤ k is given and the goal is to find a cut of minimum
cost such that all (si, ti) pairs are separated. This problem has been shown to

⋆ This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Center “Computational Intelligence” (SFB 531).

be MAX SNP-hard [3, 7, 8, 21]. As a consequence, there is no polynomial time
approximation scheme (unless P = NP) [2].

Due to the results obtained in [17], we consider multi-objective models for
the multicut problem using flow computations which can be carried out in poly-
nomial time as a subroutine. It is our aim to examine how such an approach can
approximate an optimal solution for this problem. We study an evolutionary al-
gorithm called Global SEMO (GSEMO) which has been widely used for the run-
time analysis of evolutionary multi-objective algorithms (see e.g. [4, 10, 17, 18]).
Our analysis points out that this algorithm achieves a factor k-approximation in
polynomial time as long as the weights on the edges of the given graph are poly-
nomially bounded in the size of the input. The requirement on the edge weights
is necessary since the population size of GSEMO may become as large as a poly-
nomial in the largest edge weight [13]. One way to deal with this circumstance
is to incorporate the concept of ε-dominance [14] into the algorithm. Using this
mechanism in a similar way as done in [13, 17], we prove that a k-approximation
can be achieved in expected polynomial runtime even if the weights of the given
graph are not polynomially bounded.

The paper is organized as follows. In Section 2, we present the model of the
multicut problem and the algorithms that are analyzed in this paper. The results
for GSEMO are presented in Section 3. In Section 4 we improve these results
by incorporating the ε-dominance approach into the algorithm. Finally, we give
some concluding remarks.

2 Problem Definition

We consider the following problem. Given a connected directed or undirected
graph G = (V, E) on n vertices and m edges and a cost function c : E 7→ N+

that imposes positive integer weights on the edges. Let {(s1, t1), . . . , (sk, tk)} be
a set of k pairs with si 6= ti, 1 ≤ i ≤ k. The source of commodity i is given by
si, the target by ti. We denote by cmax = maxe∈E c(e) the largest cost among
all edges.

A multicut S ⊆ E is a set of edges such that there is no path from si to ti in
(V,E \ S) for any commodity i. The cost of a subset of E is defined as the sum
of the costs of its elements. The goal is to find a multicut S ⊆ E of minimum
cost. For k = 1, we obtain the minimum s-t-cut problem as a special case.

The dual of this problem is the maximum-value multicommodity flow prob-
lem. This problem asks for an si-ti-flow for each commodity i such that the sum
of all flow values is maximum. The flow for each commodity i has to satisfy the
flow conservation constraints at every node except si and ti, and the sum of all
k flows has to obey the capacities given by the cost function c.

Let Fi denote the value of a maximum si-ti-flow in G and define F :=
∑

i Fi.
Let F ∗ denote the sum of all flow values of a maximum multicommodity flow in
G and let C∗ denote the cost of a minimum multicut of G. Note that F ∗ ≤ C∗ ≤
C := m · cmax. Furthermore we have F ∗ ≤ F =

∑

i Fi ≤ k · F ∗ ≤ k · C∗ ≤ k · C.

For the undirected case it has been shown [11] that C∗ ∈ O(log(k) ·F ∗). The
proof is constructive and leads to an O(log k)-approximation algorithm for the
minimum multicut problem. This bound is tight, i. e., there are graph classes for
which C∗ ∈ Ω(log(k) · F ∗) holds. In the directed case, the gap between F ∗ and
C∗ can be as large as Ω̃(n1/7) [6] and is at most O(

√

n log(k + 1)) [5]. In the
special case k = 1 we have F ∗ = C∗ by the max-flow-min-cut theorem [1].

Based on the results in [17], we consider an edge-based approach. We work
with bit strings of length m = |E|. For a search point x ∈ {0, 1}m, the set
E(x) := {ei ∈ E | xi = 1} denotes the subset of E corresponding to the 1’s in
x. Note, that not every search point represents a multicut, i. e., not every search
point is a feasible solution.

Due to the results for the special case of the minimum s-t-cut problem [17],
we do not consider single-objective evolutionary algorithms at all. Instead we
focus on multi-objective evolutionary algorithms. Examples for simple multi-
objective evolutionary algorithms that have been analyzed before are SEMO
and GSEMO [12, 15, 18]. The GSEMO algorithm can be described as follows.
Note that the fitness function f is vector-valued and the ≤-comparison is to be
understood component-wise.

Algorithm 1 GSEMO (Global Simple Evolutionary Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring y by flipping each bit of x independently with proba-

bility 1/m.
– let P unchanged, if there is an z ∈ P such that f(z) ≤ f(y) and f(z) 6=

f(y).
– otherwise, exclude all z with f(y) ≤ f(z) and add y to P .

We consider the fitness function f : {0, 1}m 7→ N
2, f(x) = (cost(x), f low),

where cost(x) =
∑

e∈E(x) c(e), flow(x) :=
∑

i flowi(x) and flowi(x) denotes

the value of a maximum si-ti-flow in G(x) := (V,E \ E(x)).
Note that the values of both components cost(·) and flow(·) of the fitness

function can be exponential in the input size, which implies that GSEMO has
to cope with a Pareto front of exponential size.

Therefore, we also investigate a variation of GSEMO which uses the concept
of ε-dominance [14]. It has already been shown in [13, 17] that such an approach
may be provably helpful when dealing with exponentially large Pareto fronts.
We consider the DEMO algorithm (Diversity Evolutionary Multi-objective Op-
timizer) which differs from GSEMO by using a function b that assigns the same
function value to search points with similar objective vectors. During the run
of the algorithm at most one search point for any fixed function value of b is
present in the population.

We examine DEMO partitioning the objective space into boxes by using

the function b : {0, 1}m 7→ N
2 with b1(x) :=

⌊

log(1+cost(x))
log(1+ε)

⌋

and b2(x) :=

⌊

log(1+flow(x))
log(1+ε)

⌋

, where ε > 0 is a parameter that determines the size of the

boxes. The algorithm has the following description.

Algorithm 2 DEMO (Diversity Evolutionary Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

– choose x ∈ P uniformly at random.
– create an offspring y by flipping each bit of x independently with proba-

bility 1/m.
– let P unchanged, if there is an z ∈ P such that b(z) ≤ b(y) and (b(z) 6=

b(y) or cost(z) + flow(z) < cost(y) + flow(y)).
– otherwise, exclude all z with b(y) ≤ b(z) and add y to P .

The DEMO algorithm discards a new search point y if the corresponding
box b(y) is dominated by the box b(z) of some search point z ∈ P (and y and
z do not fall into the same box). If b(y) = b(z), the algorithm discards y if its
sum of cost and flow value is larger than that of z. Otherwise, all search points
in dominated boxes are removed from the population and y is included into the
population.

Due to Laumanns et al. [14], the following upper bound on the population
size can be given.

Lemma 1. The population size |P | of DEMO is upper bounded by

B :=
log(1 + C)

log(1 + ε)
= O(ε−1 log C) = O(ε−1(log n + log cmax)).

The algorithms described in this section do not use any stopping criteria.
For theoretical investigations it is common to consider the algorithms as infinite
stochastic processes and to use the number of fitness evaluations as a measure
of the runtime. Our goal is to bound the expected number of fitness evalua-
tions (also called expected runtime) until the algorithms have obtained a good
approximation for the multicut problem.

We point out that we use the sum of single-commodity flow values instead
of the value of a multi-commodity flow as second component of the fitness func-
tion. While the multi-commodity flow value would probably lead to a stronger
approximation bound, the computation of a multi-commodity flow requires linear
programming as there is no combinatorial algorithm known. On the other hand,
single-commodity flows can be efficiently computed using different well-studied
algorithms [1]. Furthermore, an oracle for the multi-commodity flow value is a
rather strong oracle as it provides the value of the dual problem.

3 Analysis of GSEMO

The goal of this section is to prove a pseudopolynomial upper bound on the
runtime of GSEMO until it has achieved an F/C∗-approximation for the multicut

F

C∗

F ∗

F ∗ C∗ Ck · C∗k · F ∗ cost(x)F

L

flow(x)

f(x∗)

f(0m)

Fig. 1. Objective space of the fitness function f(x) = (cost(x), f low(x)). The sketch
depicts the case that the sequence F ∗, C∗, F , k · F ∗, k · C∗ is strictly increasing.
Note that subsequent values may coincide and that C can be as small as C∗. Optimal
multicuts x∗ have objective vector (C∗, 0), k-approximations lie on the the segment
from (C∗, 0) to (min{k · C∗, C}, 0).

problem. Note that F/C∗ ≤ k, hence in the worst case we get a k-approximation.
We denote by L = {x ∈ {0, 1}m | cost(x)+flow(x) ≤ F} the set of search points
whose objective vectors lie on or below the line given by the two objective values
(0, F) and (F, 0). Figure 1 shows a graphical representation of the objective
space. The following proposition shows that the search points of L represent
subsets of F/C∗-approximations of minimum multicuts.

Proposition 1. Let x ∈ L. Then E(x) is a subset of an F/C∗-approximation
of a minimum multicut of G.

Proof. Since x ∈ L we have cost(x) + flow(x) ≤ F . Let S denote a minimum
multicut of G(x). Then E(x) ∪̇ S is a multicut of G with cost(E(x) ∪̇ S) =
cost(x) + cost(S). Since S is a minimum multicut of G(x), its cost is not larger
than the sum of the cost of the individual minimum si-ti-cuts, i. e., cost(S) ≤
flow(x). Hence, we have cost(E(x)∪̇S) ≤ cost(x)+flow(x) ≤ F ≤ k·F ∗ ≤ k·C∗,
which implies that E(x) ∪̇ S is an F/C∗-approximation of a minimum multicut
of G. ⊓⊔

The preceding proposition implies the following condition for F/C∗-approximate
solutions which will be essential for the analysis of the algorithms.

Corollary 1. Let x ∈ {0, 1}m such that flow(x) = 0. Then E(x) is an F/C∗-
approximation of a minimum multicut of G if and only if x ∈ L.

We remark that the converse of Proposition 1 is not true in general, in con-
trast to the single-commodity case k = 1.

For x ∈ {0, 1}m and e ∈ E define x+e ∈ {0, 1}m by x+e(e) = 1 and x+e(e′) =
x(e′) for e′ 6= e. We can bound flow(x+e) in terms of flow(x) as follows.

Proposition 2. Let x ∈ {0, 1}m and e ∈ E. Then flow(x+e) ≥ flow(x)−kc(e).

Proof. By the (single-commodity) max-flow min-cut theorem we have flowi(x
+e) ≥

flowi(x) − c(e) for each commodity i. Summation over i yields the claimed re-
sult. ⊓⊔

Proposition 3. Let x ∈ {0, 1}m such that flowi(x) > 0 for some commodity i.
Let e ∈ E \ E(x) an edge of a minimum si-ti-cut of G(x). Then flow(x+e) ≤
flow(x) − c(e) and cost(x+e) + flow(x+e) ≤ cost(x) + flow(x).

Proof. Since flowi(x) > 0 the minimum si-ti-cut of G(x) is not the empty
set. Let x ∈ E \ E(x) an edge from such a minimum si-ti-cut. By the (single-
commodity) max-flow min-cut theorem we have flowi(x

+e) = flowi(x) − c(e).
Furthermore, flowj(x

+e) ≤ flowj(x) holds for j 6= i. Summation over i yields
the first claim.

Since cost(x+e) = cost(x) + c(e), the second claim follows directly from the
first one. ⊓⊔

The following corollary is an immediate consequence of the preceding propo-
sition and the definition of L.

Corollary 2. Let x ∈ L a search point such that flow(x) > 0. Then there exists
a 1-bit flip leading to a search point x′ ∈ L with flow(x′) < flow(x).

Now we are able to prove the following theorem which shows that the ex-
pected runtime of GSEMO is pseudopolynomial with respect to the given input.

Theorem 1. The expected time until GSEMO working on the fitness function
f constructs an F/C∗-approximation of a minimum k-commodity multicut is
O(Fm(log n + log cmax)).

Proof. The size of the population P is at most F as GSEMO keeps at each time
at most one solution per fixed flow value. First we consider the time until 0m ∈ L
has been included into the population. Note that cost(0m) = 0. Afterwards we
study the time until x ∈ L with flow(x) = 0 has been included. By Corollary 1
the edge set E(x) is an F/C∗-approximation of a minimum multicut.

The expected time until GSEMO working on the fitness function f constructs
0m is O(Fm(log n + log cmax)). This can be proved using the technique of the
expected multiplicative cost decrease with respect to minx∈P cost(x). The proof
is analogue to the single-commodity case k = 1 (see proof of Theorem 3 in [17]).

Now we bound the time until a minimum cut has been constructed. Once
again we apply the method of the expected multiplicative cost decrease, now
with respect to the flow value. Let x be the solution with the smallest flow value
in P∩L. Note that minx∈P∩L flow(x) does not increase during a run of GSEMO.

Consider a mutation step that selects x and performs an arbitrary 1-bit flip.
Such a step is called a good step. The probability of a good step is lower bounded
by Ω(1/F). By Proposition 1, E(x) is a subset of an F/C∗-approximation of a
minimum multicut, which can be obtained by including the remaining edges
one by one. Therefore, a randomly chosen 1-bit flip decreases the minimum flow
value in P ∩ L on average by a factor of at least 1 − 1/m.

Hence, after N good steps, the expected minimum flow value is bounded
from above by (1 − 1/m)N · flow(x). Since flow(x) ≤ F ≤ k · C, we obtain the
upper bound (1 − 1/m)N · k · C. Using the method of the multiplicative cost
decrease the expected time until x′ ∈ L with flow(x′) = 0 has been discovered
is O(Fm(log n+log cmax +log k)). By Corollary 1, x′ is an F/C∗-approximation
of a minimum multicut. ⊓⊔

4 Analysis of DEMO

The upper bound given in Theorem 1 is polynomial as long as the weights
are polynomially bounded with respect to the input size. For larger, i. e., expo-
nential, weights the population size may become too large to obtain an F/C∗-
approximation in expected polynomial time. To deal with this issue, we consider
DEMO with an appropriate choice of ε such that the population size is always
polynomially bounded with respect to the size of the given input.

To obtain the upper bound on the runtime of DEMO, we first consider the
time until the search point 0m has been included into the population and analyze
the time to achieve an F/C∗-approximation afterwards.

Proposition 4. Let ε ≤ 1/m and x ∈ {0, 1}m a search point such that cost(x) >
0. Then there exists a 1-bit flip leading to a search point x′ ∈ {0, 1}m with
b1(x

′) < b1(x).

Proof. Consider all 1-bit flips that remove a single edge from E(x). Among all
resulting search points, consider a point x′ that minimizes y′ := cost(x′). Let
y := cost(x).

The repeated removal of edges in E(x) yields the search point 0m. Let ℓ :=
|E(x)| ≤ m. Since y′ was minimal, y′ ≤ (1 − 1

ℓ)y holds. Since ε ≤ 1
m ≤ 1

ℓ and
ℓ ≤ y, we have

(1 + ε)(1 + y′) ≤ 1 + ε + (1 + ε)

(

1 −
1

ℓ

)

y

≤ 1 +
y

ℓ2
+

(

1 +
1

ℓ

)(

1 −
1

ℓ

)

y = 1 + y .

This implies

1 +
log(1 + y′)

log(1 + ε)
≤

log(1 + y)

log(1 + ε)
,

and finally b1(x
′) < b1(x). ⊓⊔

In the following, we bound the expected time until DEMO has produced the
search point 0m. Later on, we will show how the algorithm can proceed to obtain
an F/C∗-approximation.

Lemma 2. The expected time until DEMO working on the fitness function f
includes the search point 0m into the population is O(mε−2(log2 n + log2 cmax)).

Proof. The archiving strategy of DEMO guarantees that whenever a non-empty
box becomes empty, another search point whose box dominates the considered
box is included into the population. Therefore, minx∈P b1(x) will never increase
during the run of the algorithm.

Since the population size is bounded by B, the probability of picking a search
point x ∈ P with minimal b1-value is Ω(1/B). By Proposition 4, there exists
at least one 1-bit flip leading to a search point x′ with b1(x

′) < b1(x). The
probability to generate such a search point x′ is Ω(1/m). After at most B such
steps, the b1-value is zero implying that we have found the search point 0m.
Hence, the expected time to include 0m into the population is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)) .

This concludes the proof. ⊓⊔

To come up with an upper bound for DEMO, it is necessary to examine
how the algorithm may progress from a solution x ∈ L to a solution of x′ ∈ L
with b2(x

′) < b2(x). The following proposition points out that this is possible
by carrying out a special 1-bit flip.

Proposition 5. Let ε ≤ 1/m and x ∈ L a search point such that flow(x) > 0.
Then there exists a 1-bit flip leading to a search point x′ ∈ L with b2(x

′) < b2(x).

Proof. By Corollary 2, there exists at least one 1-bit flip leading to a search
point x′ ∈ L with flow(x′) < flow(x). Among all such search points, consider
a point x′ that minimizes y′ := flow(x′). Let y := flow(x).

The repeated application of Corollary 2 yields an F/C∗-approximation E(x∗)
of a minimum multicut of G. Let ℓ := |E(x∗)|−|E(x)| ≤ m. Since y′ was minimal,
y′ ≤ (1 − 1

ℓ)y holds. Since ε ≤ 1
m ≤ 1

ℓ and ℓ ≤ y, we have b2(x
′) < b2(x) by the

same calculation as in the proof of Proposition 4. ⊓⊔

Finally, we are able to prove the following theorem which shows that the ex-
pected runtime of DEMO with an appropriate choice of ε is always polynomially
bounded with respect to the given input.

Theorem 2. Choosing ε ≤ 1/m, the expected time until DEMO working on the
fitness function f constructs an F/C∗-approximation of a minimum multicut is
O(mε−2(log2 n + log2 cmax)).

Proof. Due to Lemma 2 the search point 0m ∈ L has been included into the pop-
ulation after an expected number of O(mε−2(log2 n + log2 cmax)) steps. Hence,
it is sufficient to consider the search process after having found a search point
x ∈ L.

The archiving strategy of DEMO guarantees that whenever a non-empty box
becomes empty, another search point whose box dominates the considered box
is included into the population. Moreover, the tie-break rule ensures that a non-
empty box with a search point x ∈ P ∩ L will never exchange that search point

for a search point x′ 6∈ L. Therefore, minx∈P∩L b2(x) will never increase during
the run of the algorithm.

Since the population size is bounded by B, the probability of picking a search
point x ∈ L with minimal b2-value among the search points in L is Ω(1/B). By
Proposition 5, there exists at least one 1-bit flip leading to a search point x′ ∈ L
with b2(x

′) < b2(x). The probability to generate such a search point x′ is Ω(1/m).
After at most B such steps, the b2-value is zero implying that we have found a
multicut. Since x′ ∈ L, this multicut is an F/C∗-approximation of a minimum
cut. Hence, the expected time to obtain an F/C∗-approximation of a minimum
multicut is

O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)) .

This concludes the proof. ⊓⊔

5 Conclusions

The multicut problem is an NP-hard generalization of the minimum cut prob-
lem. We have shown how the correlation between flows and cuts can be used
to come up with efficient evolutionary algorithms for the approximation of the
minimum multicut problem. Our multi-objective approach using flow compu-
tations and the concept of ε-dominance is able to achieve a k-approximation
in expected polynomial time. Further studies will consider how the theoretical
results obtained in this paper can be used to come up with good evolutionary
algorithms for the multicut problem by using our model in well-known evolu-
tionary multi-objective algorithms.

Acknowledgements

The authors thank Martin Skutella for helpful discussions on the topic of this
paper.

References

1. R. K. Ahuja, T. L. Magnati, and J. B. Orlin. Network flows: theory, algorithms,
and applications. Prentice Hall, 1993.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998.

3. C. Bentz, M.-C. Costa, L. Létocard, and F. Roupin. Erratum to ‘M.-C. Costa,
L. Létocard and F. Roupin: Minimal multicut and maximal integer maxiflow: A
survey” [European Journal of Operational Research 162(1) (2005) 55–69]. European
Journal of Operational Research, 177(2):1312, 2007.

4. D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zitzler.
Do additional objectives make a problem harder? In Proc. of the 9th Genetic and
Evolutionary Comp. Conference (GECCO ’07), pages 765–772. ACM Press, 2007.

5. J. Cheriyan, H. Karloff, and Y. Rabani. Approximating directed multicuts. In
Proc. of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS
’01), pages 320–328, 2001.

6. J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed cut
problems. In Proc. of the 39th Annual ACM Symposium on Theory of Computing
(STOC ’07), pages 179–188, 2007.

7. M.-C. Costa, L. Létocard, and F. Roupin. Minimal multicut and maximal integer
maxiflow: A survey. European Journal of Operational Research, 162(1):55–69, 2005.

8. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM Journal of Computing,
23:864–894, 1994.

9. B. Doerr, E. Happ, and C. Klein. Crossover is provably useful in evolutionary com-
putation. In Proc. of the 10th Genetic and Evolutionary Computation Conference
(GECCO ’08). ACM Press, 2008. to appear.

10. T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating
covering problems by randomized search heuristics using multi-objective models.
In Proc. of the 9th Genetic and Evolutionary Computation Conference (GECCO
’07), pages 797–804, 2007.

11. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. In Proc. of the 25th Annual ACM
Symposium on Theory of Computing (STOC ’93), pages 698–707, 1993.

12. O. Giel. Expected runtimes of a simple multi-objective evolutionary algorithm.
In Proc. of the IEEE Congress on Evolutionary Computation (CEC ’03), pages
1918–1925, 2003.

13. C. Horoba and F. Neumann. Benefits and drawbacks for the use of ε-dominance
in evolutionary multi-objective optimization. In Proc. of the 10th Genetic and
Evolutionary Computation Conference (GECCO ’08). ACM Press, 2008. to appear.

14. M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and
diversity in evolutionary multi-objective optimization. Evolutionary Computation,
10(3):263–282, 2002.

15. M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of multiobjec-
tive evolutionary algorithms on pseudo-boolean functions. IEEE Transactions on
Evolutionary Computation, 8(2):170–182, April 2004.

16. F. Neumann. Expected runtimes of a simple evolutionary algorithm for the multi-
objective minimum spanning tree problem. European Journal of Operational Re-
search, 181(3):1620–1629, 2007.

17. F. Neumann, J. Reichel, and M. Skutella. Computing minimum cuts by randomized
search heuristics. In Proc. of the 10th Genetic and Evolutionary Computation
Conference (GECCO ’08), 2008. (to appear, available as Technical Report CI-
242/08, Collaborative Research Center 531, Technical University of Dortmund).

18. F. Neumann and I. Wegener. Minimum spanning trees made easier via multi-
objective optimization. Natural Computing, 5(3):305–319, 2006.

19. F. Neumann and I. Wegener. Randomized local search, evolutionary algorithms
and the minimum spanning tree problem. Theor. Comp. Sci., 378(1):32–40, 2007.

20. J. Scharnow, K. Tinnefeld, and I. Wegener. The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and
Algorithms, pages 349–366, 2004.

21. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin, 2003.

22. C. Witt. Worst-case and average-case approximations by simple randomized search
heuristics. In Proc. of STACS 2005, volume 3404 of LNCS, pages 44–56, 2005.

