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Abstract. This paper provides an analytical approach to fuzzy rule
base optimization. While most research in the area has been done ex-
perimentally, our theoretical considerations give new insights to the task.
Using the symmetry that is inherent in our formulation, we show that the
problem of finding an optimal rule base can be reduced to solving a set
of quadratic equations that generically have a one dimensional solution
space. This alternate problem specification can enable new approaches
for rule base optimization.

1 Introduction

Fuzzy rule based solution representations combined with evolutionary algorithms
are a powerful real world problem solving technique, for example see [2, 5, 9, 15,
18, 19]. Fuzzy logic provides benefits in naturally representing real world quan-
tities and relationships, fast controller adaptation, and a high capacity for so-
lutions to be interpreted. The typical scenario involves using an evolutionary
algorithm to find optimum rule bases with respect to some application specific
evaluation function, see [7, 11, 13].

A fuzzy rule is a causal statement that has an if-then format. The if part is
a series of conjunctions describing properties of some linguistic variables using
fuzzy sets that, if observed, give rise to the then part. The then part is a value
that reflects the consequence given the case that the if part occurs in full. A
rule base consists of several such rules and is able to be evaluated using fuzzy
operators to obtain a value given the (possibly partial) fulfilment of each rule.

Membership functions are a crucial part of the definition as they define the
mappings to assign meaning to input data. They map crisp input observations
of linguistic variables to degrees of membership in some fuzzy sets to describe
properties of the linguistic variables. Suitable membership functions are designed
depending on the specific characteristics of the linguistic variables as well as pe-
culiar properties related to their use in optimization systems. Triangular mem-
bership functions are widely used primarily for the reasons described in [16].



Other common mappings include ‘gaussian’ [11] and ‘trapezoidal’ [8] member-
ship functions. The functions are either predefined or determined in part or com-
pletely during an optimization process. A number of different techniques have
been used for this task including statistical methods [7], heuristic approaches
[2], and genetic and evolutionary algorithms [5, 9, 14, 18]. Adjusting membership
functions during optimization is discussed in [9, 20].

A financial computational intelligence system for portfolio management is
described in [7]. Fuzzy rule bases are optimized in an evolutionary process to
find rules for selecting stocks to trade. A rule base that could be produced using
this system could look as follows:

– If Price to Earnings Ratio is Extremely Low then rating = 0.9
– If Price Change is High and Double Moving Average Sell is Very High then

rating = 0.4

The if part in this case specifies some financial accounting measures (Price to
Earnings ratio) and technical indicators [1] used by financial analysts; the output
of the rule base is a combined rating that allows stocks to be compared relative to
each other. In that system rule bases were evaluated in the evolutionary process
using a function based on a trading simulation.

The task of constructing rule base solutions includes determining rule state-
ments, membership functions (including the number of distinct membership sets
and their specific forms) and possible outputs. These parameters and the spec-
ification of data structures for computational representation have a significant
impact on the characteristics and performance of the optimization process. Pre-
vious research in applications [8, 17, 1] has largely consisted and relied upon ex-
perimental analysis and intutition for designs and parameter settings. This paper
takes a theoretical approach to the analysis of a specific design of a fuzzy rule
base optimization system that has been used in a range of successful applications
[6, 7, 11, 13]; we utilize the symetries that are inherent in the formulation to gain
insight into the optimization. This leads to an interesting alternate viewpoint of
the problem that may in turn lead to new approaches.

In particular, our formal definition and framework for the fuzzy rule base
turns the optimization problem into a smooth problem that can be analyzed an-
alytically. This analysis reduces the problem to a system of quadratic equations
whose solution space has the surprising property that it generically contains a
whole line. It should be possible to utilize this fact in the construction of fast
and efficient solvers, which will be an important application of this research. The
approach in this paper builds on experimental research presented in [7, 6], but
it should be noted that a number of other mechanisms have been proposed for
encoding fuzzy rules [8].

The methods we consider could be used in an evaluation process where the
error is minimized with respect to fitting rule bases to some training data —
in the context of the above example this would allow a system to learn rules
with an output that is directly calculated from the data. For example a rule
base evaluated in this way could be used to forecast the probability that a stock
has positive price movement [10, 12] in some future time period. A rule in such a



rule base could look like: If Price to Earnings Ratio is Extremely Low and Double
Moving Average Buy is Very High then probability of positive price movement is
0.75. In this case the training data set would be some historical stock market
data similar to that used in [6, 7].

The structure of this paper is as follows: Section 2 contains the formal defi-
nitions for the analysis presented in Section 3. Section 4 concludes the paper.

2 Approach

In this section we introduce the formulation of the models used in the analy-
sis, including the rule base solution representation, the rule base interpretation
method and the evaluation function.

2.1 Rule Base Solution Representation and Interpretation

Let us introduce some precise definitions of what is meant by the rule base solu-
tion representation. First of all, we are given L linguistic variables {A1, ..., AL}.
Each linguistic variable Ai has Mi linguistic descriptions {Ai

1, ..., A
i
Mi
} that are

represented by triangular membership functions µi
j , j = 1, ...,Mi. A fuzzy rule

has the form

If Ai1 is Ai1
j1

and Ai2 is Ai2
j2

and · · · and Aik is Aik
jk

then o, (1)

where i1, ...ik ∈ {1, ..., L}, jk ∈ {1, ...,Mik
} and o ∈ [0, 1].

A rule base is a set of several rules. Let us assume that we are given a rule
base consisting of n rules:

If Ai11 is Ai11
j1
1

and Ai12 is Ai12
j1
2

and · · · and Ai1k1 is A
i1k1
j1
k1

then o1

If Ai21 is Ai21
j2
1

and Ai22 is Ai22
j2
2

and · · · and Ai2k2 is A
i2k2
j2
k2

then o2

...
...

If Ain
1 is Ain

1
jn
1

and Ain
2 is Ain

2
jn
2

and · · · and Ain
kn is A

in
kn

jn
kn

then on,

where iml ∈ {1, ..., L} and jm
l ∈ {1, ...,Mim

l
}. Given a vector x ∈ RL of observed

values, whose components are values for the linguistic variables A1, ..., AL, we
can evaluate the rule base as follows: the function ρ describes the way the rule
base interprets data observations x to produce a single output value. This value
has an application specific meaning and can be taken to be a real number (usually
normalized to lie between zero and one). More precisely, ρ is defined as follows:

ρ : RL → R

x =


x1

x2

...
xL

 7→
∑n

m=1 o
m
∏km

l=1 µ
im
l

jm
l

(xim
l )∑n

m=1 o
m

.



2.2 Evaluation Function

We consider an evaluation function (to minimize) that measures the error when
training a rule base to fit a given data set. This training data consists of a set
{xi, yi}i=1...N , where each

xi =


x1

i

x2
i
...
xL

i


is a vector that has as many components as there are linguistic variables, i.e. xi ∈
RL ∀ i = 1, ..., N , and each yi is a real number, i.e. yi ∈ R ∀ i = 1, ..., N . Then
the evaluation function has the form

ε =
N∑

i=1

(ρ(xi)− yi)2 (2)

=
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 o

j
− yi

)2

, (3)

where

asm =
km∏
l=1

µ
im
l

jm
l

(xim
l

s ).

Our aim is to optimize the rules base in such a way that the evaluation function
ε becomes minimal. This involves two separate problems. Firstly, the form of the
membership functions µi

j may be varied to obtain a better result. Secondly, the
rule base may be varied by choosing different rules or by varying the weights oi.
In this paper we will concentrate on the second problem, taking the form of the
membership functions to be fixed. For example, we can standardize the number
of membership functions for each linguistic variable Ai to be Mi = 2ni − 1 and
define

µi
j =



0 : x ≤ j−1
2ni

2nix+ 1− j : x ∈
[

j−1
2ni

, j
2ni

]
−2nix+ 1 + j : x ∈

[
j

2ni
, j+1

2ni

]
0 : x ≥ j+1

2ni

for j = 1, ..., 2ni − 1 = Mi. These functions are shown in Figure 1.
Moreover, we can consider the number n of rules to be fixed by either working

with a specific number of rules that we want to consider, or by taking n to be
the number of all possible rules (this number will be enormous, but each rule
whose optimal weight is zero, or sufficiently close to zero can just be ignored and
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Fig. 1. Membership Functions

most weights will be of that form), depending on the application. The resulting
optimization problem will be considered in 3.2.

3 Analysis

This section contains the detailed analysis of the problem described in Section 2.
We firstly determine the maximum possible number of rules and then consider
the optimization problem for the evaluation function. As a result, we are able
to reduce the optimization problem to a system of equations (6), that has the
remarkable property that it allows (generically) a one-dimensional solution space.
This is the content of Theorem 1.

3.1 Search Space

The search space is the set of all potential rule base solutions. Let us first of all
compute the maximum number of rules nmax that we can have. Each rule can
be written in the form

If A1 is A1
j1 and A2 is A2

j2 and · · · and AL is AL
jL

then o,

where in this case ji ∈ {0, 1, ...,Mi} and ji = 0 implies that the linguistic variable
Ai does not appear in the rule. Then we have

nmax = (M1 + 1)× (M2 + 1)× · · · × (ML + 1)− 1.

Note that we have subtracted 1 to exclude the empty rule. If we include the
possible choices of weights oi with discretization oi ∈ {0, 1

d , ..., 1}, then we have
a system of

(d+ 1)nmax

possible rule bases.



3.2 Optimization Problem

In this subsection we will treat the optimization problem described in 2.2. We
have to take the training data {xi, yi}i=1...N and the various membership func-
tions µi

j as given, so we can treat the various aij as constants and simplify

ε(o) =
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 o

j
− yi

)2

=
N∑

i=1

∑n
j=1(aij − yi)2ojoj + 2

∑
j<k(aij − yi)(aik − yi)ojok(∑n

j=1 o
j
)2


=

∑n
j=1Ajjo

joj + 2
∑

j<k Ajko
jok(∑n

j=1 o
j
)2

with Ajk =
N∑

i=1

(aij − yi)(aik − yi)

=

∑n
j=1

∑n
k=1Ajko

jok(∑n
j=1 o

j
)2 .

We want to find weights oi such that this expression becomes minimal. In our
formulation this requirement is smooth in the oi, so we can compute the partial
derivatives of the evaluation function with respect to the weights. At a minimal
point omin ∈ Rn, we must have

∂ε

∂o1
(omin) = 0,

∂ε

∂o2
(omin) = 0, ...,

∂ε

∂on
(omin) = 0.

It will turn out that this requirement is equivalent to a system of quadratic
equations. So let us compute

∂ε

∂oq
(o) = 2

(∑n
i=1Aiqo

i
) (∑n

k=1 o
k
)
−
∑n

i=1

∑n
j=1Aijo

ioj

(
∑n

i=1 o
i)3

(4)

=
2

(
∑n

i=1 o
i)3

 n∑
i=1

n∑
j=1

(Aiq −Aij)oioj

 . (5)

If we can simultaneously solve these n equations
∂ε

∂o1
(o) = 0,

∂ε

∂o2
(o) = 0, ...,

∂ε

∂on
(o) = 0,

then we have found a local extrema. For only two rules, for example, we obtain

∂ε

∂o1
(o) =

2o2

(o1 + o2)3
(
(A11 −A12)o1 + (A21 −A22)o2)

)
∂ε

∂o2
(o) =

2o1

(o1 + o2)3
(
(A12 −A11)o1 + (A22 −A21)o2)

)



Therefore, if we assume that o1 6= 0 or o2 6= 0, then the optimal solution is

o1 =
A22 −A21

A11 −A12
o2.

This is a whole line that intersects zero in R2. This phenomena can be seen
clearly in the following picture:
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Fig. 2. Evaluation function for two rules

More than two rules If we have more than two rules, then the conditions
become

∂ε

∂oq
= 0⇔

 n∑
i=1

n∑
j=1

(Aiq −Aij)oioj

 = 0, q = 1, ..., n. (6)

Theorem 1. Generically, there exists a one-parameter family of solutions to
the system (6). Hence the space of extremal points for ε is a line in Rn that
passes through zero.

Proof. We will show that the n equations (6) are dependent, i.e. that we only
need to solve n− 1 of these equations and the n-th equation then follows auto-



matically. For this purpose, we rewrite the system n∑
i=1

n∑
j=1

(Aiq −Aij)oioj

 =
n∑

j = 1

j 6= q

oj
(
(Aqq −Aqj)oq + (Ajq −Ajj)oj

)︸ ︷︷ ︸
Bqj

+
n∑

j = 1

j 6= q

n∑
i = 1

i 6∈ {q, j}

(
(Aiq −Aij)oioj

)
.

Note that
Bqj = −Bjq.

Denote the q-th equation by Eq. Using the equality above, we compute

n∑
k=1

okEk =
n∑

k=1

n∑
j = 1

j 6= q

Bkjo
koj︸ ︷︷ ︸

=0

+
n∑

k=1

n∑
j = 1

j 6= q

n∑
i = 1

i 6∈ {q, j}

(Aik −Aij)︸ ︷︷ ︸
Cijk

oiojok


= 0.

The last term vanishes due to the fact that the tensor Cijk is symmetric in the
index pair (i, j), symmetric in the index pair (i, k) and skew (i.e. anti-symmetric)
in the index pair (j, k). Such a tensor has to vanish identically. It is hence suf-
ficient to solve (6) just for (n− 1) equations, the last equation is automatically
satisfied.

Remark Given realistic training data, it is obvious that the extremal points
that lie in [0, 1]n will be minimal.

4 Conclusions and Future Work

We have successfully reduced the problem of finding optimal weights oi for a rule
base (given an arbitrary set of training data points) to a system of n equations for
n unknowns, where n is the number of rules. Moreover, we have shown that the
space of extremal points for the evaluation function is a line through the origin in
Rn. Hence a genetic algorithms will be able to find an optimal solution in [0, 1]n

using well-established and fast methods [3, 4]. The reason for this, somewhat
surprising, result lies in the specific form of our rule base formulation: not the



values of the weights themselves are important, but the relationship that they
have with respect to each other. Mathematically speaking, the optimal solution
o is really an element of (n−1)-dimensional projective space RPn−1, rather that
an element of Rn.

As a result, it is possible to use the analysis in this paper to design an op-
timization process in which combinations of rules consisting of the if parts are
selected and then evaluated using a fast algorithm to find the optimal then parts
(output weights) to produce a rule base. This would be beneficial in a range of
applications as mentioned in the introduction. For example, reducing the size
of the search space by removing the assignment of output weights from the
general rule base search problem; or by fixing an initial structure for the rules
(using knowledge from the application domain or because of specific applica-
tion requirements) that feasible solutions should contain and then redefining the
search objective to extend this set rather than using a free search — this is for
instance a very useful feature in financial applications [7]. As a part of this fur-
ther research, we will also examine, combinatorially and empirically, algorithms
and genotype representations that utilize the reduction in complexity that arises
from the analysis in this paper.
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