
Rigorous Analyses of Fitness-Proportional Selection for
Optimizing Linear Functions

Edda Happ Daniel Johannsen Christian Klein Frank Neumann
Max-Planck-Institut für Informatik

Campus E 1 4
66123 Saarbrücken, Germany

ABSTRACT

Rigorous runtime analyses of evolutionary algorithms (EAs)
mainly investigate algorithms that use elitist selection meth-
ods. Two algorithms commonly studied are Randomized
Local Search (RLS) and the (1+1) EA and it is well known
that both optimize any linear pseudo-Boolean function on n
bits within an expected number of O(n log n) fitness evalua-
tions. In this paper, we analyze variants of these algorithms
that use fitness proportional selection.

A well-known method in analyzing the local changes in the
solutions of RLS is a reduction to the gambler’s ruin prob-
lem. We extend this method in order to analyze the global
changes imposed by the (1+1) EA. By applying this new
technique we show that with high probability using fitness
proportional selection leads to an exponential optimization
time for any linear pseudo-Boolean function with non-zero
weights. Even worse, all solutions of the algorithms during
an exponential number of fitness evaluations differ with high
probability in linearly many bits from the optimal solution.

Our theoretical studies are complemented by experimen-
tal investigations which confirm the asymptotic results on
realistic input sizes.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms

Keywords: Running time analysis, Selection, Theory

1. INTRODUCTION

Selection methods play an important role when designing
successful evolutionary algorithms. This can be observed in
several applications. In this paper, we examine the use of
fitness-proportional selection (also known as roulette wheel
selection) which has been introduced in the context of ge-
netic algorithms (see e.g. [5]). Here, each individual of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

population is selected with a probability that depends on its
fitness in correlation to the fitness of the other individuals.

Our goal is to examine the mentioned method by rigorous
runtime analyses. Such analyses have been mainly carried
out for evolutionary algorithms using elitist selection strate-
gies, that is, only the currently best solutions are used in the
next generation. In the case that the parent and offspring
population are considered for selecting the individuals of the
next generation, the best solution found so far cannot get
lost and unimodal functions attaining not too many fitness
values are easy to optimize [1].

Rigorous runtime analyses for evolutionary algorithms us-
ing elitist selection strategies are available for pseudo-Boolean
functions [10, 13, 14] as well as for several well-known combi-
natorial optimization problems [4, 11, 15]. The most widely
studied algorithm for such theoretical investigations is the
(1+1) EA which works with a population of size one and pro-
duces one offspring in each iteration. Often also a simplified
algorithm called Randomized Local Search (RLS) is consid-
ered which flips exactly one randomly chosen bit in each
mutation step. Both algorithms optimize all linear pseudo-
Boolean functions in an expected number of O(n log n) iter-
ations.

Our aim is to analyze the properties of fitness proportional
selection with respect to the runtime behavior. Therefore,
we replace the elitist selection procedure of RLS and the
(1+1) EA by fitness proportional selection and call the al-
gorithms RLSF and EAF respectively. This implies that the
fitness of the next solution may be smaller than the fitness
of the current one. The objective of our investigations is to
study how this influences the runtime behavior. Initial inves-
tigations into this direction have been carried out by He and
Yao [8] who have shown that RLSF needs in expectation an
exponential number of iterations to reach an optimal search
point for the function OneMax. First, we generalize the
investigations in [8]. In particular, we show that with high
probability RLSF and EAF on OneMax are even unable to
improve the initial solution within a polynomial number of
steps by any constant factor greater than one. Later on, we
show that both algorithms are actually inefficient on gen-
eral linear pseudo-Boolean functions with a linear number
of non-zero weights. These theoretical results are comple-
mented with experimental investigations that show that the
asymptotic behavior can also be observed for realistic input
sizes.

In our analyses, we make use of results on the gambler’s
ruin problem [2] which has already been considered for the
analysis of evolutionary computation methods before [6, 12].

These results can be directly applied to algorithms working
with mutation operators that flip one single bit in each iter-
ation. However, a generalization to more general mutation
operators is not straight-forward. Another powerful tool for
analyzing evolutionary algorithms is drift analysis [7]. We
study its relation to the gambler’s ruin problem in greater
detail and point out that drift analysis can be used to gen-
eralize the results of the gambler’s ruin process to mutation
steps that flip more than a single bit. This correlation may
be of independent interest as we expect it to be useful for
further analyses of evolutionary computation methods in the
future.

The outline of the paper is as follows. In Section 2, we
introduce the algorithms that are subject to our analyses.
Section 3 points out the correlation between the gambler’s
ruin problem and drift analysis. In Section 4, we show that
RLSF and the EAF are unable to get close to the optimal
solution of the function OneMax. These negative results are
extended to the whole class of linear functions with a linear
number of non-zero weights in Section 5. Our experimental
results are shown in Section 6 and finally we finish with some
conclusions.

2. ALGORITHMS

To examine the effect of fitness proportional selection, we
consider two basic algorithms that have already been stud-
ied with respect to elitist strategies. Our algorithms work
with a population of size one and produce in every itera-
tion one single offspring by mutation. Both have the ob-
jective to optimize a non-negative pseudo-boolean function
f : {0, 1}n → R

+
0 . The first one is called Fitness-proportional

Randomized Local Search (RLSF) and was investigated be-
fore in [8]. In every mutation step RLSF flips one single bit
and can be defined as follows.

Algorithm 1. RLSF

1. Choose x ∈ {0, 1}n uniformly at random.

2. Repeat

(a) Create x′ by flipping one randomly chosen bit of x.

(b) Replace x by x′ with probability f(x′)
f(x)+f(x′)

.

Considering mutation-based evolutionary algorithms it is
more common to allow to flip more than one bit in a single
step. Our algorithm called EAF differs from the previous
one by flipping each bit with probability 1/n.

Algorithm 2. EAF

1. Choose x ∈ {0, 1}n uniformly at random.

2. Repeat

(a) Create x′ by flipping each bit of x with probabil-
ity 1/n.

(b) Replace x by x′ with probability f(x′)
f(x)+f(x′)

.

We compare the algorithms introduced above with the
variants using elitist selection procedures. RLS and the
(1+1) EA differ from RLSF and EAF , respectively, by us-
ing the following selection mechanism in step 2.(b) of the
algorithms.

Algorithm 3. Selection for RLS and (1+1) EA

• Replace x by x′ if and only if f(x′) ≥ f(x).

When analyzing the runtime behavior of evolutionary al-
gorithms we consider the optimization time of the algorithm
which equals the number of fitness evaluations to reach an
optimal search point. The expected optimization time refers
to the expectation of this value.

3. GAMBLER’S RUIN AND

DRIFT ANALYSIS

The gambler’s ruin problem and its analysis has been used
before in the analysis of evolutionary algorithms. However,
a direct application of these results has up to now only been
shown for local variants such as RLS. The aim of this section
is to recall the results on the gambler’s ruin problem and to
generalize them to global mutation operators. To achieve
this goal, we make use of drift analysis and show how this
method can be put into the framework of a gambler’s ruin
process.

In the classical gambler’s ruin problem (see [2]) the fol-
lowing process is studied. Let x be the amount of dollars a
gambler owns at the beginning of a series of bets. Every bet
the gambler wins one dollar with probability p and looses
one dollar with probability q = 1− p. In this setting we are
interested in the probability that the gambler wins, that is,
that his capital reaches an amount of z > x dollars before it
attains the amount of zero dollars.

The following variant of this problem can be easily ob-
tained from the statements in [2].

Theorem 1 (Gambler’s Ruin). Let p be the probabil-
ity of winning one dollar and q = 1 − p be the probability
of loosing one dollar in a single bet and let δ = q/p. Start-
ing with x dollars, the probability of reaching z > x dollars
before attaining zero dollars is

px =
δx − 1

δz − 1
.

Note, that px ≤ δ−(z−x) holds if δ > 1. This result on the
gambler’s ruin process is well suited to prove lower bounds
on the runtime behavior of randomized search heuristics like
RLS and RLSF where in every step only a single bit is
flipped. The following theorem makes this precise by stat-
ing two conditions that if simultaneously satisfied imply an
exponential lower bound on the optimization time of a ran-
domized search heuristic.

Theorem 2 (Local Gambler’s Ruin).
Let X0, X1, X2, . . . with Xt+1 −Xt ∈ {−1, 0, 1} for all t ≥ 0
be random variables describing a Markov process over the
state space N0. For constants a, b ∈ R with 0 ≤ a < b ≤ 1
let the random variable T denote the earliest point in time
t ≥ 0 that satisfies Xt ≤ an.

If there exists a constant δ > 1 such that the two condi-
tions

(a) P [X0 ≥ bn] = 1 − 2−Ω(n),

(b) P [Xt+1 − Xt = 1 | Xt] ≥ δ · P [Xt+1 − Xt = −1 | Xt]

for all t ≥ 0 and an < Xt < bn

hold then T ≥ δ1/3·(b−a)·n with probability 1 − 2−Ω(n).

Proof. For t ≥ 0 let Xt, 0 ≤ a < b ≤ 1, and δ > 1
be defined as above and suppose that conditions (a) and (b)
hold.

If the statement follows for X0 ≥ bn, then it also follows if
X0 ≥ bn with probability 1−2−Ω(n). Hence, by condition (a)
we suppose that X0 ≥ bn.

Let p = 1/(1 + δ) and q = δ/(1 + δ). Then it holds by
condition (b) that P [Xt+1 − Xt = −1 | Xt] ≤ p as well as
P [Xt+1 − Xt = −1 | Xt] ≥ q for all t ≥ 0 and Xt such that
an < Xt < bn. Thus, if we replace P [Xt+1 − Xt = −1 | Xt]
by p and P [Xt+1 − Xt = −1 | Xt] by q for all t ≥ 0 and Xt

such that an < Xt < bn we do not increase the probability
that T ≥ B for any B ≥ 0.

We apply the Gambler’s Ruin Theorem as stated above
with z = ⌊(b−a) ·n⌋ and x = ⌊z/2⌋ and choose n sufficiently
large such that z − x ≥ 4/9 · (b − a) · n. Since δ = q/p > 1,
the probability px of reaching z before attaining zero is at
most δ−(z−x).

Thus, starting with X0 ≥ bn, the probability that Xt

reaches a value of at most an after passing the value ⌊bn⌋−x

is at most δ−4/9·(b−a)·n. Given less then δ1/3·(b−a)·n such
tries, the probability to succeed is still at most δ−1/9·(b−a)·n.
Hence, T ≥ δ1/3·(b−a)·n with probability 1 − 2−Ω(n).

The previous theorem is generalized by the Global Gam-
bler’s Theorem below which on its own is a specialization of
a variant of the Drift Theorem found in [3].

Theorem 3 (Drift Theorem). Let X0, X1, X2, . . . be
the random variables describing a Markov process over a
state space S and g : S → R

+
0 a function mapping each

state to a non-negative real number. Pick two real num-
bers a(n) and b(n) depending on a parameter n such that
0 ≤ a(n) < b(n) holds. Let T be the random variable denot-
ing the earliest point in time t ≥ 0 such that g(Xt) ≤ a(n)
holds. If there are constants λ > 0 and D ≥ 1 and a poly-
nomial p(n) > 0 such that the four conditions

1. g(X0) ≥ b(n),

2. b(n) − a(n) = Ω(n),

3. E[e−λ·(g(Xt+1)−g(Xt)) | Xt] ≤ 1 − 1/p(n) for all t ≥ 0
and Xt such that a(n) < g(Xt) < b(n),

4. E[e−λ·(g(Xt+1)−b(n)) | Xt] ≤ D for all t ≥ 0 and Xt

such that g(Xt) ≥ b(n)

hold then for all time bounds B ≥ 0

P [T ≤ B] ≤ eλ·(a(n)−b(n)) · B · D · p(n)

holds.

Next, we consider the Drift Theorem from a different point
of view. The following Global Gambler’s Ruin Theorem can
handle mutation steps flipping more than one bit in a similar
way as the Local Gambler’s Ruin Theorem handles one-bit
flips. The reader may consider the described behavior as a
gambler’s ruin process where the gambler is allowed to win
or loose j ≥ 1 dollars with a certain probability in every
step. Similar as in the Local Gambler’s Ruin Theorem, we
consider the ratio between the probabilities of winning and
losing j dollars for any fixed choice of j.

Theorem 4 (Global Gambler’s Ruin).
Let X0, X1, X2, . . . be random variables describing a Markov
process over the state space N0. For constants a, b ∈ R with
0 ≤ a < b ≤ 1 let the random variable T denote the earliest
point in time t ≥ 0 that satisfies Xt ≤ an.

If there exist constants δ > 1 and C > 0 such that the
three conditions

(a) P [X0 ≥ bn] = 1 − 2−Ω(n),

(b) P [Xt+1 − Xt = j | Xt] ≥ δj · P [Xt+1 − Xt = −j | Xt]

for all j ≥ 1, t ≥ 0, and an < Xt < bn,

(c)
∑

j≥1 δj · P [Xt+1 − Xt = −j | Xt] ≤ C

for all t ≥ 0 and Xt ≥ bn

hold then T ≥ δ1/3·(b−a)·n with probability 1 − 2−Ω(n).

Proof. For t ≥ 0 let Xt , 0 ≤ a < b ≤ 1, and δ > 1 be
defined as above, suppose conditions (a) – (c) hold, and let
∆t = Xt+1 − Xt.

We apply the Drift Theorem with the same random vari-
ables, g = id, a(n) = an, b(n) = bn, λ = ln(δ)/2, D = C +1,

and p(n) = (1+ δ−1)/(1− δ−1/2)2, i. e., S = N
+
0 , g(X) = X,

eλ = δ1/2 > 1, and p(n) is a strictly positive constant. We

denote E(e−λ·(g(Xt+1)−g(Xt)) | Xt) by µt then

µt =
∑

j∈Z

δ−j/2 · P [∆t = j | Xt] .

We check conditions 1. – 4. of the Drift Theorem.

1. If the statement follows for X0 ≥ bn, then it also fol-
lows if X0 ≥ bn with probability 1 − 2−Ω(n). Hence,
condition 1 is satisfied by condition (a).

2. Clearly, b(n) − a(n) = (b − a)n = Ω(n).

3. Let t ≥ 0 and Xt such that a(n) < g(Xt) < b(n), that
is, an < Xt < bn. We carefully replace P [∆t = j | Xt]
for all j ∈ Z such that µt increases. This is done in
three steps.

First, we suppose that P [∆t = 0 | Xt] < 1 for all
an < Xt < bn. We can safely do so, because if Xt

takes a value such that P [∆t = 0 | Xt] = 1 then
P [T ≥ B] = 1 for every B ≥ 0 since the process never
leaves this state.

Second, we ignore whenever Xt = Xt+1 for some t ≥ 0
in the definition of T . Clearly, this never increases T .
Formally, we replace P [∆t = 0 | Xt] by zero and
P [∆t = j | Xt] by P [∆t = j | Xt]/(1−P [∆t = 0 | Xt])
for all j 6= 0. Thus,

µt ≤
∑

j 6=0

δ−j/2 ·
P [∆t = j | Xt]

1 − P [∆t = 0 | Xt]
.

Third, since δ > 1, the right hand-side of this inequal-
ity never decreases if we increase P [∆t = −j | Xt] by
some amount and decrease P [∆t = 0 | Xt] by the same
amount for any j ≥ 1. Thus, condition (b) implies that
µt does not decrease if we replace P [∆t = −j | Xt] by
δ−jP [∆t = j | Xt] for every j ≥ 1 and P [∆t = 0 | Xt]
by 1 −

∑

j≥1(1 + δ−j) · P [∆t = j | Xt]. Hence,

µt ≤ 1 −
(1 − δ−1/2)2

1 − P [∆t = 0 | Xt]
·
∑

j≥1

P [∆t = j | Xt] .

Now, again invoking condition (b),

P [∆t = j | Xt] ≥
P [∆t = j | Xt] + P [∆t = −j | Xt]

1 + δ−1

and since P [∆t = 0 | Xt] = 1 −
∑

j 6=0 P [∆t = j | Xt]

we have µt ≤ 1 − 1/p(n).

4. Let t ≥ 0 and Xt such that g(Xt) ≥ b(n), that is,
Xt ≥ bn. Then µt increases if we reduce P [∆t = j]
to zero for all j ≥ 1 in combination with replacing
P [∆t = 0] by one. Thus,

µt ≤ 1 +
∑

j≥1

δjP [∆t = −j | Xt]
(c)

≤ D .

Since conditions 1. – 4. of the Drift Theorem hold,

P [T ≤ δ1/3·(b−a)·n] ≤
(C + 1)(1 − δ−1/2)2

1 + δ−1
· δ−1/6·(b−a)·n .

This is bounded from above by 2−Ω(n), hence the statement
of this theorem follows.

4. ANALYSES FOR ONEMAX

The function OneMax which counts the number of one-bits
in a bit string, OneMax : {0, 1}n → N0

OneMax(x) =
n
∑

i=1

xi ,

is the first one for which rigorous results with respect to
the optimization time behavior of the (1+1) EA have been
shown. An upper bound of O(n log n) can be found in [10]
and a matching lower bound can easily be obtained by using
results on the coupon collectors problem [9]. The Θ(n log n)
bound also holds for RLS as the analyses for the (1+1) EA
rely on mutation steps flipping in each iteration one single
bit. The goal of this section is to point out that the variants
RLSF and EAF are unable to optimize OneMax.

We start by analyzing the behavior of RLSF on OneMax.
It has already been shown in [8] that the expected optimiza-
tion time of RLSF on OneMax is exponential. Actually,
we show a much stronger result: With high probability the
initial solution of roughly n/2 one–bits is improved only sub-
linearly in n for an exponential number of steps.

Proposition 5. Let 0 < α < 1/2, be a constant and
let X ≤ αn be the number of zero-bits of the current search
point and X ′ the number of zero-bits of the next search point
of the EAF . Then for sufficiently large n

1. P [X ′ − X = 1 | X] ≥ 1
4
,

2. P [X ′ − X = −1 | X] ≤ 1
4
·
(

1
2

+ α
)

< 1
4
.

Proof. Let α, X, and X ′ be given as in the statement.

1. Since there are n − X ≥ (1 − α) · n one-bits in the
current solution, the probability that one of them is
flipped by RLSF is at most 1 − α. This new solution
is accepted with probability

n − X − 1

2(n − X) − 1
≥

1

2
·

(

1 −
1

2(1 − α)n − 1

)

.

Since 1 − α > 1/2 and limn→∞ 1/(2(1 + α)n + 1) = 0,
P [X ′ − X = 1 | X] ≥ 1

4
for sufficiently large n.

2. The probability that one of the X zero-bits of the cur-
rent solution is flipped is at most α. This new solution
is accepted with probability

n − X + 1

2(n − X) + 1
≤

1

2
·

(

1 +
1

2(1 − α)n + 1

)

.

Thus, since α < 1/2 and limn→∞ 1/(2(1+α)n+1) = 0,
P [X ′ − X = 1 | X] ≤ 1

4
·
(

1
2

+ α
)

< 1
4

for sufficiently
large n.

Using the previous proposition we are able to prove the
following theorem.

Theorem 6. Let ǫ > 0 be a constant. Then there exists
asecond constant γ > 1 such that with probability 1− 2−Ω(n)

in all solutions produced in the first γn steps of RLSF at
most (1 + ǫ) · n/2 bits are set correctly.

Proof. Because of monotonicity we can suppose ǫ < 1/2.
For t ≥ 0 let Xt be the number of zero-bits of the solution
x after t iterations. We apply Theorem 2 with parameters
a = 1

2
· (1− ǫ), b = 1

2
· (1− 1

2
· ǫ), δ = 1+ ǫ/4, and sufficiently

large n.

(a) Since one-bits and zero-bits occur with the same prob-
ability in the initial solution, Chernoff bounds imply

P [X0 ≥ bn] = 1 − e−Ω(n) .

(b) Let t ≥ 0 and Xt < bn. Then by Proposition 5 with
α = b

P [Xt+1 − Xt = 1 | Xt]

P [Xt+1 − Xt = −1 | Xt]
=

2

1 + 2α
= 1 +

ǫ

4 + ǫ
≥ δ .

The statement follows.

The EAF can flip more than one bit in a single mutation
step. To handle such mutations we consider the probabil-
ity that an offspring of the current solution x increases (or
decreases) the number of one-bits by j and is accepted.

Proposition 7. Let 0 < α ≤ 1 and let X ≤ αn be the
number of zero-bits of the current search point and X ′ the
number of zero-bits of the next search point of the EAF .
Then for all j ∈ {1, . . . , X} and sufficiently large n

1. P [X ′−X = j | X] ≥ (2 ·(1−α))j ·P [X ′−X = −j | X]
if α < 1/2,

2. P [X ′ − X = −j | X] ≤ 1
j!

.

Proof. Let X ≤ αn, 1 ≤ j ≤ X, and X ′ be defined as
above.

1. Let α < 1/2. The probability that X ′ = X +j is given
by the probability pj that the new solution has X + j
zero-bits times the probability qj that the new solution
is accepted. Similarly, the probability that X ′ = X−j
is given by the probability p−j that the new solution
has X − j zero-bits times the probability q−j that this
new solution is accepted.

Now, pj is at least the probability that j + k one-bits
and k zero-bits in the current solution are flipped for

some 0 ≤ k ≤ X − j ≤ min{X, n − X − j} and hence
at least

X−j
∑

k=0

(

n − X

k + j

)

·

(

X

k

)

·

(

1

n

)j+2k

·

(

1 −
1

n

)n−j−2k

,

while p−j is exactly the probability that j+k zero-bits
and k one-bits in the current solution are flipped for
some 0 ≤ k ≤ X − j and hence

X−j
∑

k=0

(

X

k + j

)

·

(

n − X

k

)

·

(

1

n

)j+2k

·

(

1 −
1

n

)n−j−2k

.

Then pj ≥
(

1−α
α

)j
· p−j since for X ≤ αn < n/2

(

n − X

k + j

)

·

(

X

k

)

≥

(

n − X

X

)j

·

(

X

k + j

)

·

(

n − X

k

)

.

Next, qj = (n−X)−j
2(n−X)−j

and q−j = (n−X)+j
2(n−X)+j

. Thus,

qj

q−j
= 1 −

2(n − X)j

2(n − X)2 + (n − X)j − j2

Since j ≤ n − X, n − X ≥ (1 − α)n, and α < 1/2 the
following three inequalities hold for sufficiently large n

qj

q−j
≥ 1 −

j

(1 − α)n
≥ e

−
2j

(1−α)n ≥ (2α)j .

It follows that P [X ′ − X = j | X] = pj · qj is at least
(2·(1−α))j ·p−j ·q−j = (2·(1−α))j ·P [X ′−X = −j | X].

2. The probability that X ′ = X − j is at most the proba-
bility that j of the X zero-bits of the current solution
are flipped which is

(

X
j

)

· 1
nj ≤ 1

j!
.

Using the previous proposition, we are able to apply the
Global Gambler’s Ruin Theorem from Section 3 to show
that also the EAF is with high probability not able to get
close to the optimal solution within an exponential number
of steps.

Theorem 8. Let ǫ > 0 be a constant. Then there exists
a constant γ > 1 such that with probability 1− 2−Ω(n) in all
solutions produced in the first γn steps of the EAF at most
(1 + ǫ) · n/2 bits are set correctly.

Proof. For t ≥ 0 let Xt be the number of zero-bits of the
solution x after t iterations, then X0, X1, X2, . . . is a Markov
process. We apply Theorem 4 with parameters a = 1

2
·(1−ǫ),

b = 1
2
· (1 − ǫ

2
), δ = 1 + ǫ

2
, C = eδ, and n sufficiently large.

(a) P [X0 ≥ bn] = 1 − e−Ω(n) by the Chernoff bounds.

(b) P [Xt+1 − Xt = j | Xt] ≥ δj · P [Xt+1 − Xt = −j | Xt]
hold for all t ≥ 0, Xt < bn, and j ∈ {1, . . . , Xt} by
Proposition 7.1 with α = b.

(c)
∑

j≥1 δjP [Xt+1 − Xt = −j | Xt] ≤
∑

j≥1
δj

j!
≤ eδ = C

holds for all t ≥ 0 and Xt ≥ bn by Proposition 7.2.

The statement follows.

5. LINEAR FUNCTIONS

A pseudo-boolean function f : {0, 1}n → R is linear if there
are τ, w1, . . . , wn ∈ R such that for every x ∈ {0, 1}n

f(x) = τ +
n
∑

i=1

wixi .

The analyses of the optimization times of RLS and the
(1+1) EA optimizing linear functions can be found in [1].
Both algorithms find an optimal solution in an expected
optimization time of O(n log n). A matching lower bound of
Ω(n log n) holds if the number of non-zero weights is linear
with respect to the number of bits. In contrast, we show
that with high probability the optimization time of RLSF

and the EAF is exponential in this case.

If a weight wi is zero, then the corresponding bit xi does
not contribute to f(x). Therefore, we only consider func-
tions that have non-zero weights. Similar to the Ω(n log n)
for RLS and the (1+1) EA, all our results also hold for func-
tions with a linear number of non-zero weights.

The investigation of RLS and the (1+1) EA in [1] restricts
its analysis to linear functions with non-negative weight since
both algorithms treat one-bits and zero-bits symmetrically.
For every bit xi with negative weight wi it is possible to
replace xi by 1 − xi, wi by |wi| and τ by τ − |wi|. Thus,
all weights of the resulting function are non-negative. Fur-
thermore, the resulting function has the same values as the
original function, only that zero and one are swapped for all
bits that originally had negative weights. Since RLSF and
the EAF as well treat zero-bits and one-bits symmetrically,
from now on we suppose that the weights w1, . . . , wn of a
linear function are positive. The behavior of RLS and the
(1+1) EA is invariant under change of τ , thus in the analysis
of these algorithms τ is set to zero.

This is not true for the corresponding algorithms using
fitness-based selection. Still, since RLSF and the EAF are
only defined on non-negative functions, we may suppose that
τ is non-negative as well. Clearly, if τ, w1, . . . , wn are non-
negative then the function f(x) = τ +

∑n
i=1 wixi is maxi-

mized if all bits are set to one.

It is easy to see that it is not possible to guarantee a bad
approximation ratio based on the the solutions’ fitnesses.
Consider functions where one weight is substantially larger
than the others. Both, RLSF and the EAF need expected
linear time to set the corresponding bit to one, thus achiev-
ing an arbitrarily good approximation. Therefore, we take
the number of ones obtained by the algorithms as a quality
measure. Our aim is to prove lower bounds on the optimiza-
tion time behavior until a certain number of ones has been
achieved.

The following lemma will be useful to prove lower bounds
on the optimization time of RLSF and the EAF on the class
of linear functions.

Lemma 9. Let ǫ > 0 and f : {0, 1} → R
+
0 be a linear

function with non-negative weights and let x ∈ {0, 1}n be a
point with k one-bits. Then at least (1 − ǫ)k one-bits of x
have weight at most f(x)/ǫk.

Proof. Assume that strictly less than (1 − ǫ)k one-bits
of x have weight at most f(x)/ǫk. Then there are at least
ǫk one-bits of x with weight strictly more than f(x)/ǫk.
But then f(x) > ǫk · f(x)/ǫk = f(x) which clearly is a
contradiction.

We first consider RLSF . Using the Local Gambler’s Ruin
Theorem from Section 3, we are going to show that the op-
timization time of this algorithm is exponential with high
probability. To show this result, we bound the probabilities
of increasing or decreasing the number of ones in the current
solution in a similar way as done for the function OneMax.

Proposition 10. Let 0 < α < 1/3 and f : {0, 1} → R
+
0

be linear with strictly positive weights. Let X ≤ αn be the
number of zero-bits of the current and X ′ of the next search
point of RLSF . Then for sufficiently large n

1. P [X ′ − X = 1 | X] ≥ 1
3
,

2. P [X ′ − X = −1 | X] ≤ α.

Proof. Let X ≤ αn and X ′ with α < 1/3 be defined as
above.

1. Let ǫ = (1 − 3α)/6(1 − α). By Lemma 9 the current
search point has at least (1− ǫ)(1− α)n one-bits each
of weight at most f(x)/ǫ(1 − α)n. Thus, one of these
bits is flipped with probability at least 1/6 · (5 − 3α)
and the next search point is accepted with probability
at least

f(x) − f(x)/ǫ(1 − α)n

2f(x) − f(x)/ǫ(1 − α)n
=

(1 − 3α)n − 6

2(1 − 3α)n − 6
.

The statement follows for n ≥ 18(1 − α)/(1 − 3α)2.

2. The probability that X ′ = X − 1 is at most X/n ≤ α
which is the probability that one of the zero-bits of the
current search point x is flipped.

Using the previous proposition we are able to prove the
following theorem.

Theorem 11. Let f : {0, 1} → R
+
0 be linear with non-

zero weights. Then for every ǫ > 0 there exists a constant
γ > 1 such that with probability 1 − 2−Ω(n) in all solutions
produced by RLSF in the first γn steps at most (2/3 + ǫ)n
bits are set correctly.

Proof. As discussed before, we suppose that all weights
of f are strictly positive and hence that in an optimal solu-
tion of f all bits have the value one. For t ≥ 0 let Xt be the
number of zero-bits of the solution x after t iterations.

We apply Theorem 2 with a = 1/3− ǫ, b = 1/3− ǫ/2, and

δ = 1/3b with δ ≥ e3ǫ/2 > 1.

(a) Due to the Chernoff bounds P [X0 ≥ bn] = 1− 2−Ω(n),
since in the initial search point one-bits and zero-bits
occur with the same probability.

(b) Let t ≥ 0 and Xt such that an < Xt < bn. Then
P [Xt+1 − Xt = 1 | Xt] ≥ δ · P [Xt+1 − Xt = −1 | Xt]
by Proposition 10 with α = 1/3 − ǫ/2.

The statement follows.

For the EAF it is necessary to handle mutation steps that
flip more than a single bit. The aim is to apply the Global
Gambler’s Ruin Theorem from Section 3. Therefore, we
bound the probabilities of increasing or decreasing the num-
ber of one-bits by j for each fixed j.

Proposition 12. Let 0 < α ≤ 1 and let f : {0, 1} → R
+
0

be linear with strictly positive weights. Let X ≤ αn be the
number of zero-bits of the current and X ′ of the next search
point of EAF . Let 1 ≤ j ≤ X, then

1. P [X ′ − X = j | X] ≥ (1−3α)j

(3ej)j for α < 1/3,

2. P [X ′ − X = −j | X] ≤ αj

j!
≤ (αe)j

jj .

Proof. Let X ≤ αn and X ′ with 0 < α ≤ 1 be defined
as above and let j ∈ {1, . . . , X}.

1. Let α < 1/3 and ǫ = 2α/(1 − α). By Lemma ?? the
current search point has k ≥ (1 − 3α)n one-bits with
weight at most f(x)/2αn. Thus, the probability that
exactly j of these bits are flipped is at least

(

k

j

)

·
1

nj
·

(

1 −
1

n

)n−j

≥
1

e
·

(

1 − 3α

j

)j

and the next search point is accepted with probability
at least

f(x) − j · f(x)/2αn

2f(x) − j · f(x)/2αn
=

2αn − j

4αn − j

j≤αn

≥ 1/3 .

2. The probability that X ′ = X − j is at most the proba-
bility that j of the zero-bits of the current search point
are flipped which is

(

X

j

)

1

nj
≤

αj

j!
≤

αjej

jj
.

Using this proposition, we are able to show the following
lower bound on the optimization time of the EAF on every
non-negative linear function with non-zero weights.

Theorem 13. Let f : {0, 1} → R
+
0 be linear with non-

zero weights. Then there exists a constant γ > 1 such that
with probability 1 − 2−Ω(n) in all solutions produced by the
EAF in the first γn steps at most 0.97n bits are set correctly.

Proof. As discussed before, we suppose that all weights
of f are strictly positive and hence that in an optimal solu-
tion of f all bits have the value one. For t ≥ 0 let Xt be the
number of zero-bits of the solution x after t iterations.

We apply Theorem 4 with parameters a = 0.03, b = 0.035,
δ = (1 − 3b)/3e2b > 1.15, and C = eδ.

(a) Due to the Chernoff bounds P [X0 ≥ bn] = 1− 2−Ω(n),
since in the initial search point one-bits and zero-bits
occur with the same probability.

(b) Let t ≥ 0 and Xt such that an < Xt < bn. Then
P [Xt+1 − Xt = j | Xt] ≥ δ · P [Xt+1 − Xt = −j | Xt]
by Proposition 12 with α = b.

(c) Let t ≥ 0 and Xt such that Xt ≥ bn. Then for α = 1
∑

j≥1 δj · P [Xt+1 − Xt = −j | Xt] ≤
∑

j≥1 δj/j! ≤ C
by Proposition 12.1.

The statement follows.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 5 10 15 20 25 30

O
pt

im
is

at
io

n
T

im
e

Size of Individual

Runtime Results

OneMax
BinaryValue

Alternation
LeadingOnes

Figure 1. The expected optimization time of the EAF on various
fitness functions depending on the bit size of the individuals. Observe
that we use a logarithmic scale. For every size of individuals, we
conducted 50 runs.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 5 10 15 20 25 30

O
pt

im
is

at
io

n
T

im
e

Size of Individual

Runtime Results for BinaryValue

Minimum
Mean

Maximum

Figure 2. A closer look at the optimization time of the EAF on
BinaryValue. The minimum, maximum, and mean runtime (over 50
runs) is shown.

6. EXPERIMENTAL RESULTS

We conduct experiments to emphasize the result of this pa-
per. For this we study the function OneMax as defined in
Section 4 and the following additional three pseudo-Boolean
functions.

BinaryValue(x) :=

n
∑

i=1

2ixi .

Alternation(x) := ⌈n⌉ +
n
∑

i=1

(−1)ixi .

LeadingOnes(x) :=
n
∑

i=1

i
∏

j=1

xj .

All these functions have been studied before in theoreti-
cal as well as in practical works. The functions OneMax,
BinaryValue, and Alternation are linear, thus the ex-
pected optimization time of the elitist (1+1) EA is of or-
der Θ(n log n), see [1]. In contrast to this, the function

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 5 10 15 20 25 30

In
di

vi
du

al
s

pe
r

N
um

be
r

of
 B

its
 S

et

Bits Set

Distribution of Bits Set

OneMax
BinaryValue

Alternation
LeadingOnes

Figure 3. The frequency of individuals depending on the number of
correctly set bits of the individuals during a run of the EAF . The
data was obtained by taking the mean values of 25 runs on 30-bit
individuals.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 10 20 30 40 50 60 70 80 90 100

In
di

vi
du

al
s

pe
r

F
itn

es
s

% of Maximal Fitness

Distribution of Fitness

OneMax
BinaryValue

Alternation
LeadingOnes

Figure 4. The frequency of individuals depending on the fitness of
the individuals during a run of the EAF . The data was obtained by
taking the mean values of 25 runs on 30-bit individuals.

LeadingOnes, which counts the number of ones in the bit-
string x up to the first zero, is not linear. It is well known
that the elitist (1+1) EA has expected optimization time
Θ(n2) on this function [1].

We run the EAF on the fitness functions mentioned above
for individuals of sizes from 5 to 30. For each size, 50 runs
are conducted. In Figure 1, the average optimization time
of all four functions is shown.

Our experiments show that the standard deviation from
the average is quite high. To illustrate this, Figure 2 takes
a closer look at the function BinaryValue. It shows the
minimum, maximum, and mean of the optimization times
needed by the 50 runs for each bit-size from 5 to 30. We
see that these differ by orders of magnitude. For individ-
uals consisting of 26 bits, for example, the fastest run has
an optimization time of 605,563 generations compared to
570,330,004 generations for the slowest. The standard de-
viation for each bit-size is depicted by the bars around the
mean optimization time. That these bars seem to reach fur-

ther down than up is caused by the logarithmic scale used.

Interestingly, it seems that for LeadingOnes the opti-
mization time is lower (albeit still exponential) than for the
linear functions. We can only speculate that this is caused
by the fact that flipping one of the first bits to zero becomes
more and more costly as the number of leading one-bits ap-
proaches the total number of bits.

Our proofs make use of the fact that individuals are likely
to get stuck with about half of their bits set and cannot
proceed from there. To illustrate this effect, we conduct 25
runs with 30-bit individuals for each of the four functions
mentioned above. During these runs, we keep track of how
many individuals with a certain number of correctly set bits
are created. Figure 3 shows the results of this experiment
and the distribution is indeed as expected.

We also analyze how many individuals of certain fitness
are generated for the four functions. The results are shown
in Figure 4. Although we know that in most individuals only
about half the bits are set correctly, only for OneMax and
Alternation the average individual as well has only about
half the maximal possible fitness. For BinaryValue the
number of individuals created for each fitness value raises
linearly. This is caused by the fact that the highest bits are
also the most expensive ones. Hence flipping them to zero
is more unlikely than flipping a lower bit to zero. Thus,
the one-bits tend to cluster in the higher part of the indi-
vidual, leading to more individuals of a high fitness value.
For LeadingOnes, nearly all individuals generated have low
fitness, and as soon as a certain fitness is reached, it seems
that the optimal individual is found quite fast. Indeed, the
number of individuals having a certain fitness value falls
off exponentially fast towards the end. This may again be
caused by the fact that once a large number of leading ones
has been generated, it is expensive to accept solutions with a
small number of leading ones. The more leading ones exist,
the higher the price of accepting such solutions.

*

7. CONCLUSIONS

We have carried out rigorous runtime analyses for using fit-
ness proportional selection in evolutionary algorithms. Our
results point out that switching from elitist selection to fit-
ness proportional selection increases the runtime of sim-
ple evolutionary algorithms drastically on all linear pseudo-
Boolean functions with a linear number of non-zero weights.
Our experimental investigations for some popular functions
complement our asymptotic results and show that the proven
behavior may also be observed for small instance sizes.

Due to the negative results for the use of fitness propor-
tional selection presented in this paper, the question arises
whether larger populations can help to overcome the draw-
backs pointed out. Often it is argued that fitness propor-
tional selection helps in the optimization process as it en-

sures a diverse population. We think it would be a challeng-
ing and interesting step to analyze population-based EAs
using fitness proportional selection or other non-elitist se-
lection strategies in the future.

References

[1] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[2] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley, 3rd edition, 1968.

[3] O. Giel and P. K. Lehre. On the effect of popula-
tions in evolutionary multi-objective optimization. In
GECCO ’06: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 651–
658, New York, NY, USA, 2006. ACM.

[4] O. Giel and I. Wegener. Evolutionary algorithms
and the maximum matching problem. In Proc. of
STACS ’03, volume 2607 of LNCS, pages 415–426,
2003.

[5] D. E. Goldberg. Genetic Algorithms in Search Opti-
mization and Machine Learning. Addison-Wesley, 1989.

[6] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic algorithms,
and the sizing of populations. Evolutionary Computa-
tion, 7(3):231–253, 1999.

[7] J. He and X. Yao. Drift analysis and average time
complexity of evolutionary algorithms. Artificial Intel-
ligence, 127:57–85, 2001.

[8] J. He and X. Yao. Towards an analytic framework for
analysing the computation time of evolutionary algo-
rithms. Artif. Intell., 145(1-2):59–97, 2003.

[9] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[10] H. Mühlenbein. How genetic algorithms really work:
mutation and hillclimbing. In Proc. of PPSN ’92, pages
15–26. Elsevier, 1992.

[11] F. Neumann and I. Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning
tree problem. In Proc. of GECCO ’04, volume 3102 of
LNCS, pages 713–724, 2004.

[12] F. Neumann and C. Witt. Ant colony optimization and
the minimum spanning tree problem. In Electronic Col-
loquium on Computational Complexity (ECCC), 2006.
Report No. 143.

[13] G. Rudolph. How mutation and selection solve long
path problems in polynomial expected time. Evolution-
ary Computation, 4(2):195–205, 1996.

[14] C. Witt. An analysis of the (µ+1) ea on simple pseudo-
boolean functions. In Proc. of GECCO ’04, volume 3102
of LNCS, pages 761–773, 2004.

[15] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Proc. of
STACS ’05, volume 3404 of LNCS, pages 44–56, 2005.

