
Computing Minimum Cuts by Randomized Search
Heuristics ∗

Frank Neumann
Algorithms and Complexity

Max-Planck-Institut für Informatik
Saarbrücken, Germany

fne@mpi-inf.mpg.de

Joachim Reichel
Institut für Mathematik

TU Berlin
Berlin, Germany

reichel@math.tu-berlin.de

Martin Skutella
Institut für Mathematik

TU Berlin
Berlin, Germany

skutella@math.tu-berlin.de

ABSTRACT

We study the minimum s-t-cut problem in graphs with costs
on the edges in the context of evolutionary algorithms. Min-
imum cut problems belong to the class of basic network op-
timization problems that occur as crucial subproblems in
many real-world optimization problems and have a variety of
applications in several different areas. We prove that there
exist instances of the minimum s-t-cut problem that can-
not be solved by standard single-objective evolutionary al-
gorithms in reasonable time. On the other hand, we develop
a bi-criteria approach based on the famous maximum-flow
minimum-cut theorem that enables evolutionary algorithms
to find an optimum solution in expected polynomial time.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: evolutionary algorithms, minimum s-t-cuts,
multi-objective optimization, randomized search heuristics

1. INTRODUCTION

Metaheuristics such as evolutionary algorithms, ant colony
optimization, and local search methods are known to be
good problem solvers for a wide range of real-world optimiza-
tion problems. Empirical tests confirm that they provide
high-quality solutions within reasonable time for many such
problems. Understanding the success of these metaheuris-
tics from a theoretical point of view has gained increasing
interest in recent years and is an ongoing challenge.

A lot of progress has been made in analyzing simple evo-
lutionary algorithms with respect to their runtime behavior

∗
This work was supported by the Deutsche Forschungsgemein-

schaft (DFG) as part of the Collaborative Research Center “Com-
putational Intelligence” (SFB 531).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

on artificial pseudo-boolean functions [4, 9] as well as some
well-known combinatorial optimization problems [8, 14, 15,
16, 18, 19]. We contribute to this line of research and study
the minimum s-t-cut problem in a given graph with weights
on the edges. This is one of the basic, classical problems in
combinatorial optimization, operations research, and com-
puter science [2]. It is well known that the problem of com-
puting a minimum s-t-cut can be solved in polynomial time
and is closely related to the problem of computing a max-
imum flow in a given graph. Besides the classical s-t-cut
problem, there are many other variants of cutting problems
some of which are NP-hard. Examples are the maximum
cut problem or the minimum multicut problem [10]. Evo-
lutionary algorithms have produced good results for various
kinds of difficult cutting problems [5, 13, 17].

We start by considering two single-objective models for
the minimum s-t-cut problem in Section 2. One is node-
based, the other one is edge-based. In the node based ap-
proach we are searching for a partitioning of the vertices
into two subsets, one containing s and the other containing
t, such that the cost of the edges connecting the s- to the
t-side of the cut is minimal. In the edge based approach we
search for a subset of edges of minimal costs such that the
deletion of those edges disconnects t from s, i. e., the chosen
edges constitute a cut.

It turns out that the two mentioned single-objective ap-
proaches do not lead to an efficient optimization process for
basic evolutionary algorithms. We present classes of graphs
with the following undesired property: Once the evolution-
ary algorithm has found some suboptimal s-t-cut, it is ex-
tremely unlikely that this solution will eventually be turned
into an optimal solution within a polynomial number of it-
erations. The reason is that in the search space consisting of
all s-t-cuts there is a second-best (suboptimal) solution such
that the globally optimal solution is far away and thus very
unlikely to be reached within a single step. Moreover, due
to the special structure of the considered graphs, the evo-
lutionary algorithm gets easily trapped in this second-best
locally optimal solution.

Afterwards, in Section 3, we examine an edge-based multi-
objective model of the problem that takes the cost of a subset
of edges as well as the remaining s-t-flow value into account
that can be sent after removing the chosen edges. This trick
helps to somehow enlarge the actual search space by enhanc-
ing infeasible edge sets (whose removal does not disconnect
t from s). The enlarged search space no longer allows for
the undesired situation in the single-objective approach dis-
cussed above.

Benefits of such bi-criteria evolutionary algorithms for
single-objective optimization problems have been observed
before. Vertex cover and set cover problems [6] are similar
to our problem in the sense that single-criteria evolutionary
algorithms get easily trapped in locally optimal solutions
while a bi-criteria approach successfully finds the globally
optimal solution. A bi-criteria approach for the minimum
spanning tree problem [15] leads to a speed-up for dense
graphs compared to single-criteria approaches.

In order to evaluate a subset of edges with respect to the
maximum s-t-flow value after deletion of those edges, we
assume that the evolutionary algorithm has access to an
oracle that can compute the maximum flow value in a graph.
Due to the close relation of maximum s-t-flows and minimum
s-t-cuts, this assumption seems to be questionable at first
sight. We therefore discuss this issue in some more detail in
the following.

We first argue from a theoretical point of view. While
an explicitly given maximum s-t-flow (specified by the flow
value on every edge of the graph) directly exposes a mini-
mum s-t-cut, the maximum flow value alone does not contain
any structural information about a minimum cut besides the
minimum cut capacity. In particular, having access to such
an oracle does not render the minimum cut problem entirely
trivial.

From a more practical point of view, having access to
such a maximum flow oracle seems reasonable in certain sit-
uations. Consider, for example, a network of water or oil
pipelines. When a leak occurs at some point t of the net-
work, enough pipeline connections have to be cut off by using
stop-cocks such that no more liquid leaks from the system.
On the other hand, it is desirable to keep the number of
inactivated pipeline connections at a minimum in order to
keep the negative impact small. In the described scenario,
after cutting off some edges, the remaining flow out of the
leak can be easily observed and is actually the crucial basis
for further decision-making.

Finally, in contrast to the basic minimum s-t-cut problem
considered here, in more complex settings the complexity of
a minimum cut computation and the related maximum flow
computation can be considerably different. Consider for a
example a multicommodity flow setting with k source-sink
pairs (si, ti), i = 1, . . . , k. Here, a maximum multicom-
modity flow can be computed in polynomial time while the
problem to find a set of edges of minimum cost that discon-
nects every sink ti from its associated source si, i = 1, . . . , k,
is NP-hard [3]. It is therefore reasonable to assume that
maximum multicommodity flow computations are used as
subroutines when trying to compute a minimum cut discon-
necting all source-sink pairs. As a final example we mention
length-bounded flows and cuts. Also in this situation, the
maximum flow value is considerably easier to obtain than a
minimum cut [1].

We continue with the discussion of the result presented in
Section 3. As both criteria (the cost of chosen edges and the
remaining flow value) admit a number of function values that
is exponential in the input size, the Pareto front explored by
the evolutionary algorithm is of exponential size and we in-
vestigate a multi-objective evolutionary algorithm that uses
the concept of ε-dominance introduced in [11]. This con-
cept leads to a partitioning of the two-dimensional objective
space into a certain number of boxes. For each box at most
one search point is archived. The size of the boxes is deter-

mined by a parameter ε which has to be chosen according
to the considered problem. We show that this algorithm
performs well for a wide range of ε-values. In particular, we
show that a minimum s-t-cut can be computed in expected
polynomial time using the multi-objective approach.

The outline of the paper is as follows. In Section 2, we
analyze the single-objective approaches to the minimum cut
problem and show that they do not lead to an efficient
optimization process. In Section 3, we present the multi-
objective model and prove that the expected optimization
time of this approach is polynomial. Finally, we finish with
some conclusions.

2. SINGLE-OBJECTIVE APPROACH

We consider the following problem. Given a connected di-
rected graph G = (V, E) on n + 2 vertices and m edges and
a cost function c : E → N+ that imposes positive integer
weights on the edges. Two nodes s, t ∈ V are distinguished.
We call s the source node and t the target node.

A s-t-cut S ⊆ E is a set of edges such that there is no path
from s to t when the edges of S are deleted from E. The
cost of a subset of E is defined as the sum of the costs of its
elements. The goal is to find an s-t-cut S ⊆ E of minimum
cost. We denote by cmax = maxe∈E c(e) the largest cost
among all edges.

First, we examine two single-objective approaches. Here,
we consider the well-known (1+1) EA working on bit strings
of length n. New search points are obtained by flipping each
bit of the current search point with probability 1/n. The
algorithm can be described as follows.

Algorithm 1. (1+1) EA
1. Choose an initial search point x ∈ {0, 1}n uniformly at

random.
2. Repeat

• create an offspring x′ by flipping each bit of x with
probability 1/n.

• if f(x′) ≤ f(x), x := x′.

For our investigations, we are interested in the number of
fitness evaluations to reach an optimal search point. This
is called the optimization time of the considered algorithm.
Often the expectation of this value is analyzed and called
the expected optimization time.

2.1 Node-based Search

We first investigate the (1+1) EA that searches for a parti-
tioning of the vertices such that the edges crossing the two
partitions constitute a minimum cut.

The search space is {0, 1}n, i. e., each bit of a search point
x corresponds to one vertex of V \{s, t}. If xi = 0, the vertex
vi is on the same side of the cut as the source s whereas
xi = 1 assigns vi to the target t. Let S = {s} ∪ {vi|xi = 0}
and T = {t} ∪ {vi|xi = 1}.

The fitness of a search point x is given by

cost(x) =
X

e∈E∩(S×T)

c(e),

which computes the sum of the cost of all edges leading from
S to T . Note, that each search point constitutes a cut, i. e.,
there are no infeasible solutions using this approach.

s t

v2 v3 vkv1

2

2

1

1

3

3

k

k

0

0
vk−1

Figure 1. Graph Gk

In the following, we present a class of instances where
the (1+1) EA in the described setting is not able to find
a minimum cut in polynomial time with high probability.
To simplify the presentation we use real-valued costs on the
edges. However, an appropriate scaling can be used to come
up with instances where the costs are positive integers and
the following results also hold.

The example is based on graphs Gk that are used as build-
ing blocks (see Figure 1). The graph Gk consists of a path
of k nodes (excluding s and t) connected by edge pairs. The
costs on the edge pairs are increasing from 1 to k. In addi-
tion, the very last edge pair has cost 0, such that assigning
all nodes to the source s constitutes the unique minimum
cut of cost 0. On the other hand, assigning all nodes to the
target t is a local optimum of cost 1.

For simplicity, we assume that the bits of a vector from
{0, 1}k are in the same order as the corresponding vertices
on the path from s to t. For example, cost(0k−11) = k.
Furthermore, cost(0k) = 0 and cost(1k) = 1.

We define the notion of a block of bits as follows. A block
is a set of consecutive bits that have the same value. The
length of a block is the number of its bits. For example,
x = 0k consists of one single block of 0’s of length k. In
the following, the right-most block of a bit string will play
an important role, and we use len(x) to define the length of
that block.

Lemma 1. Let len(x) < k. Flipping the bit left of the
right-most block increases len(x) by at least 1 and decreases
cost(x) by at least 1.

Lemma 2. Let x be a search point with len(x) ≥ 2. Pro-
vided that only 1-bit flips occur, all future accepted search
points x′ satisfy len(x′) ≥ len(x).

In other words: If x = ∗00 holds, this property is main-
tained for all future accepted search points (provided that
only 1-bit flips occur). Similar for x = ∗11.

Now we describe the construction of the graph Gk,` based
on Gk. Consider ` copies of Gk and merge all copies of s.
Similarly, merge all copies of t. The resulting graph has
k` + 2 nodes and 2`(k + 1) edges. The j-th copy of Gk will
be denoted by Gj . The value costj(x) corresponds to the
total cost caused by the edges in Gj leading from S to T .

For the lower bound on the running time of the (1+1) EA

we choose k = Θ(n1/10) and ` = Θ(n1/10). Furthermore,
we add n− k` vertices adjacent to t. The resulting graph is
called G′

k,` (see Figure 2). In the following we distinguish
between the original Gk,` (called chain part) and the star
part. All edges in the star part have cost 1/n. Adding the
star part has the consequence that steps flipping nodes in
the flow part become more unlikely. As there are Θ(n1/5)
nodes in the chain part but Θ(n) nodes in the star part, steps
flipping exactly i nodes in the chain part, i a constant, have
probability Θ(n−(4/5)i) (using similar counting arguments
as in [16]).

9>>>>>>>>>>=>>>>>>>>>>;
n− k` nodest

1
n

1
n

1
n

1
n

Gk,`

Figure 2. Graph G′
k,`

Theorem 1. With probability 1 − o(1), the optimization

time of the (1+1) EA on G′
k,` is 2Ω(n1/10).

Proof. We consider a typical run consisting of different
phases of length n7/5 and show that a local optimal solution
which is not globally optimal is reached with probability
1 − o(1). As the chain part consists only of Θ(n1/5) nodes
while the total number of nodes is n (excluding s and t),
mutation steps flipping at least two bits in the chain part
do not occur with probability 1− O(n−8/5n7/5) = 1− o(1)
within these phases. Let xj be the part of a search point x
which consists of the bits corresponding to the nodes of Gj .

Claim 1. With probability 1 − o(1), after n7/5 steps a
search point x has been obtained for which the following two
statements hold.
1. For each Gj either xj = ∗00 or xj = ∗11 holds.
2. For at least one Gj, xj = ∗11 holds.

Proof. The probability that a fixed xj of the initial
search point does not match ∗11 is 3/4. These events are
independent for each component Gj . Hence, the probabil-
ity that there is no j, 1 ≤ j ≤ ` such that xj of the initial
search point matches ∗11 is (3/4)`. Thus, the second state-
ment holds with probability 1 − o(1) for the initial search
point. By Lemma 2, the statement holds with at least the
same probability at the end of the phase.

Consider any component Gj . If xj = ∗00 or xj = ∗11 for
the initial search point, by the same lemma, this property
holds at the end of the phase. Suppose xj = ∗01 or xj =
∗10. The probability that the two right-most bits of xj are
not flipped within a phase of n7/5 steps is at most (1 −
1/n)(2n7/5) = O

“
e−2n2/5

”
.

There are ` = Θ(n1/10) components which implies that

with probability 1−O
“
n1/10e−2n2/5

”
= 1− o(1), xj = ∗00

or xj = ∗11 holds for each j at the end of the phase.

Claim 2. With probability 1− o(1), after additional n7/5

steps a search point x has been obtained for which the fol-
lowing two statements hold.
1. For each Gj either xj = 0k or xj = 1k holds.
2. For at least one Gj, xj = 1k holds.

Proof. With probability 1 − o(1) only such mutation
steps occur that flip no bits or exactly one bit in the chain
part. Mutation steps that flip no bits in the chain part are
irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit
in the chain part is flipped. Due to the choice of 1/n for
the cost of the star edges, the fitness change caused by the
star part is at most (n− k`)/n < 1. The fitness changes by
at least 1 when flipping exactly one bit in the chain part.

Hence, changes in the star part do not affect the statements
given in Lemma 2 and Lemma 1.

There is a sequence of at most n1/5 1-bit flips in the
chain part that results in a search point x fulfilling the first
statement: For each component Gj flip the bit left to the
right-most block. By Lemma 1, such steps are accepted.
By Lemma 2, the length of the right-most block does not
decrease. The probability of a particular 1-bit flip in the
chain part in the next mutation step is at least 1/(2en).
Hence, the expected time until a search point fulfilling the
first statement is reached is upper bounded by O(n6/5). Us-
ing Markov’s inequality, the probability of having reached
such a search point within a phase of n7/5 steps is 1− o(1).

By Claim 1, there is at least one component Gj with
xj = ∗11 at the end of first phase. By Lemma 2 and
the first statement, xj = 1k holds at the end of the sec-
ond phase.

Claim 3. With probability 1− o(1), after additional n7/5

steps a search point x has been obtained for which the fol-
lowing three statements hold.
1. For each Gj either xj = 0k or xj = 1k holds.
2. For at least one Gj, xj = 1k holds.
3. All bits corresponding to nodes in the star part are set

to 1.

Proof. After having reached a search point where for
each Gj either xj = 0k or xj = 1k holds, bit flips affecting
the chain part are only accepted if they flip at least k flow
nodes. This is exponentially unlikely during a phase of n7/5

steps. Hence the first two statements are fulfilled at the end
of the phase.

Within this phase all bits corresponding to star nodes are
set to 1 with probability 1− o(1) using similar fitness layer
arguments as before.

After having reached a search point where the three prop-
erties of the preceding claim hold, we consider one fixed
component Gj with xj = 1k. This component can only be
turned into an optimal component by flipping all bits of Gj

in a single mutation step. The probability for this event
is O(n−k). The expected waiting time for such a step is

Ω(nk) = 2Ω(k log n). Using Markov’s inequality once more,

the optimization time is 2Ω(k) with probability 1−o(1) as all
failure probabilities during our typical run have been shown
to be o(1).

An integral cost vector can be obtained by multiplying all
edge costs by n. Theorem 1 also applies to the modified cost
vector.

We want to remark that Theorem 1 also applies to undi-
rected graphs. A pair of oppositely directed edges of equal
cost behaves exactly as a single, undirected edge of the same
cost.

2.2 Edge-based Search

Now we consider an approach that searches for a set of edges
which represents a minimum cut. Therefore we work with
bit strings of length m = |E| in the (1+1) EA. For a search
point x ∈ {0, 1}m, the set E(x) := {ei ∈ E | xi = 1} denotes
the subset of E corresponding to the 1’s in x. Note, that
not every search point represents an s-t-cut.

1

1

1

1 + ε

1 + ε

1 + ε

1 + ε

1

1

(k + 1 edges) (k edges)

v

s t

Figure 3. Graph Hk

We consider the fitness functionf(x) := cost(x)+αflow(x)
for some α > 1, where cost(x) :=

P
e∈E(x) c(e) and flow(x)

denotes the maximum value of an s-t-flow in the graph
G(x) := (V, E \ E(x)). The capacity of an edge e ∈ E
equals its cost c(e). The fitness function is to be minimized.
Note that flow(x) vanishes if and only if E(x) contains an
s-t-cut of G. Hence, flow(x) is a penalty term that penal-
izes bitstrings that do not correspond to a feasible solution.
If E(x) contains an s-t-cut of G, the fitness function equals
the value of the corresponding cut. A factor α ≤ 1 is un-
suitable, since the empty set would have smaller (or equal)
fitness than the global optimum.

In the following, we present a class of instances for which
(1+1) EA fails to explore a minimum cut in polynomial time
with high probability. Again, we use real-valued costs on the
edges to simplify the presentation. The instances are based
on the graph Hk (see Figure 3). Hk consists of k + 1 edges
from s to v with cost 1 and k edges from v to t with cost
1 + ε. Choosing ε > 1

k
implies that the minimum s-t-cut of

Hk is given by the set of 1-edges. The set of (1 + ε)-edges is
another cut of larger cost. Requiring ε < 2

k
will turn out to

be useful later.

Let a(x) denote the cardinality of E(x) intersected with
the set of 1-edges, and let b(x) := |E(x)| − a(x). Then
cost(x) = a(x) · 1 + b(x) · (1 + ε) and flow(x) = min{k +
1 − a(x), (k − b(x))(1 + ε)}. Note that the global optimum
corresponds to a(x) = k + 1 and b(x) = 0, whereas a(x) = 0
and b(x) = k is a local optimum of strictly larger value.

First we characterize the dependence of flow(x) on a(x)
respectively b(x).

Proposition 1. If b(x) ≥ a(x) + 1, then flow(x) = (k−
b(x))(1+ε). If b(x) ≤ a(x)−1, then flow(x) = k+1−a(x).

In the case that only 1-bit flips occur the following slightly
stricter precondition is maintained throughout the run of
(1+1) EA.

Lemma 3. If b(x) ≥ a(x) + 2 for some search point x,
then this property also holds for all future accepted search
points, provided that only 1-bit flips occur.

Proof. Let x′ denote the search point constructed from
x. Since x′ differs from x by one bit, we have b(x′) ≥ a(x′)+
1. A case distinction reveals that f(x′) ≤ f(x) holds if and
only if a(x′) = a(x) − 1 or b(x′) = b(x) + 1. This implies
that 1-bit-flips are only accepted if they decrease a(x) or
increase b(x), and hence, b(x′) ≥ a(x′) + 2 holds if x′ is
accepted.

Lemma 4. If a(x) ≥ b(x) + 2 for some search point x,
then this property also holds for all future accepted search
points, provided that only 1-bit flips occur.

tHk,`
clique of

n− l − 1 nodes

Figure 4. Graph H′
k,`

Now we describe the construction of the graph Hk,l based
on Hk. Consider l copies of Hk and merge all copies of s.
Similarly, merge all copies of t. The resulting graph has
l + 2 nodes and l(2k + 1) edges. The j-th copy of Hk will
be denoted by Hj . The values aj(x) and bj(x) correspond
to the cardinality of E(x) intersected with the set of 1- and
(1 + ε)-edges in Hj , respectively.

For the lower bound on the running time of the (1+1) EA

we choose k = Θ(n4/10) and ` = Θ(n1/10). Furthermore, we
add a clique of n− l − 1 vertices (one vertex being t). The
resulting graph is called H ′

k,` (see Figure 4). In the following
we distinguish between the original Hk,` (called bundle part)
and the clique part. All edges in the clique part have cost
δ ≤ (α − 1)/n2. Adding the clique has the consequence
that steps flipping edges in the bundle part become more
unlikely. As there are Θ(n1/2) edges in the bundle part but
Θ(n2) edges in the clique part, steps flipping exactly i edges

in the bundle part, i a constant, have probability Θ(n−(3/2)i)
(using similar counting arguments as in [16]).

Theorem 2. With probability 1 − o(1), the optimization

time of the (1+1) EA on H ′
k,` is 2Ω(n1/10).

Proof. We consider a typical run consisting of different
phases of length n5/2 and show that a local optimal solution
which is not globally optimal is reached with probability
1− o(1).

Claim 4. With probability 1− o(1) for each j, 1 ≤ j ≤ `,
|aj(x)− bj(x)| ≥ 2 holds for the initial search point x.

Proof. Each component Hj contains exactly 2k+1 edges
that can be either chosen or not. Let xj be the part of a
search point x which consists of the bits corresponding to
these edges. Clearly, xj has 2k +1 bits and the search space
Xj for Hj is of size 22k+1. In the following, we count the
number of search points in Xj where |aj(x) − bj(x)| < 2
holds. For aj(x)− bj(x) = 0 the number of search points in
Xj is given by

kX
i=0

k

i

!
k + 1

i

!
≤

k

k/2

!
kX

i=0

k + 1

i

!
= O(k−1/222k+1)

The same bound can be shown for aj(x) − bj(x) = ±1.
Hence, the probability that |aj(x) − bj(x)| < 2 holds for
the initial search point x is upper bounded by

O(k−1/222k+1)

22k+1
= O(k−1/2) = O(n−2/10)

There are ` = Θ(n1/10) such components which implies that

with probability 1 − O(n1/10 · n−2/10) = 1 − O(n−1/10) =
1 − o(1), |aj(x) − bj(x)| ≥ 2 holds for each j, 1 ≤ j ≤ `, of
the initial search point x.

Note that the property of Claim 4 does not only hold if
the initial search point is chosen uniformly at random. For
example, if the (1+1) EA is started from the empty set,

the claimed property holds after an additional phase of n5/2

steps with probability 1− o(1).

We consider phases consisting of n5/2 steps. As the bundle
part consists only of Θ(n1/2) edges while the total number
of edges is Θ(n2), mutation steps flipping at least two bits in

the bundle part do not occur with probability 1−O(n5/2n−3)
= 1− o(1) within these phases.

Claim 5. With probability 1 − o(1), after n5/2 steps a
search point x has been obtained for which the following two
statements hold.
1. For each Hj either bj(x) = k and aj(x) = 0 or bj(x) =

0 and aj(x) = k + 1 holds.
2. For at least one Hj, bj(x) = k and aj(x) = 0 holds.

Proof. With probability 1 − o(1) only such mutation
steps occur that flip no bits or exactly one bit in the bundle
part. Mutation steps that flip no bits in the bundle part are
irrelevant for the claim and can be ignored.

Now consider the mutation steps where exactly one bit in
the bundle part is flipped. Due to the choice of δ ≤ α−1

n2 for
the cost of the clique edges, the fitness change caused by the
clique part is at most (n − l − 1)(n − l − 2)δ < α − 1. The
different cases examined in Lemma 3 and 4 show that the
fitness changes by at least α − 1 when flipping exactly one
bit in the bundle part. Hence, changes in the clique part do
not affect the statements given in Lemma 3 and 4.

Let

rj =

(
k − bj(x) + aj(x) if bj(x) ≥ aj(x) + 2 ,

k + 1− aj(x) + bj(x) if aj(x) ≥ bj(x) + 2 .

and let r =
P`

j=1 rj be the sum over the values rj for the

components Hj . Due to Lemma 3 and 4, steps decreasing
the value of r are accepted while steps increasing the value
of r are rejected. The value r decreases with probability
at least r/(em) in the next mutation step. Considering the
different values of r the expected time until a search point
with r = 0 has been reached is upper bounded by

n1/2X
r=1

(em/r) = O(m log n).

Using Markov’s inequality, the probability of having reached
a search point where r = 0 holds within a phase of n5/2 steps
is 1− o(1).

After initialization bj(x) ≥ aj(x) + 2 holds for at least
one Hj with probability 1 − o(1). This implies that for
this component the local optimum where bj(x) = k and
aj(x) = 0 is reached with probability 1 − o(1) within the

considered phase of n5/2 steps.

Claim 6. With probability 1− o(1), after additional n5/2

steps a search point x has been obtained for which the fol-
lowing three statements hold.
1. For each Hj either bj(x) = k and aj(x) = 0 or bj(x) =

0 and aj(x) = k + 1 holds.
2. For at least one Hj, bj(x) = k and aj(x) = 0 holds.
3. All bits corresponding to edges in the clique part are set

to 0.

Proof. After having reached a search point where for
each Hj either bj(x) = k and aj(x) = 0 or bj(x) = 0 and
aj(x) = k + 1 holds, bit flips affecting the bundle part are
only accepted if they flip at least 2k + 1 bundle edges. This
is exponentially unlikely during a phase of n5/2 steps. Hence
the first two statements are fulfilled at the end of the phase.

Within this phase all bits corresponding to edges in the
clique part are set to 0 with probability 1−o(1) using similar
fitness layer arguments as before.

After having reached a search point where the three prop-
erties of the preceding claim hold, we consider one fixed com-
ponent Hj where bj(x) = k and aj(x) = 0. This component
can only be turned into an optimal component by flipping
all bits of Hj in a single mutation step. The probability
for this event is O(m−2k−1). The expected waiting time for

such a step is Ω(m2k+1) = 2Ω((2k+1) log m). Using Markov’s

inequality once more, the optimization time is 2Ω(k) with
probability 1 − o(1) as all failure probabilities during our
typical run have been shown to be o(1).

The example of this section can be modified as follows
to obtain integral costs. Let β

γ
be a rational lower bound

on α − 1. We choose ε := 3
2k

and δ := β
γ
n−2. Finally we

multiply all edge costs with 2kγn2. The resulting cost vector
is integral and the coefficients are polynomially bounded in
the input size (for fixed α). Theorem 2 also applies to the
modified cost vector.

We want to remark that Theorem 2 also applies to undi-
rected graphs. Replacing a directed edge in H ′

k,` by an undi-
rected edge does not effect cost(x) nor flow(x).

3. MULTI-OBJECTIVE APPROACH

Let G = (V, E) denote a directed or undirected graph with
a cost function c : E 7→ N+ on the edges and s, t ∈ V two
distinguished nodes. In the multi-objective setting we con-
sider an edge-based approach using the fitness function f :
{0, 1}m 7→ N2

+, f(x) = (cost(x), f low(x)), where cost(x) :=P
e∈E(x) c(e) and flow(x) denotes the value of a maximum

s-t-flow in G(x) := (V, E \ E(x)). Again, the capacity of
an edge e ∈ E equals its cost c(e). Instead of combining
cost(x) and flow(x) into one single value as in the single-
objective setting, we consider both components separately.
The objectives have to be minimized. Let F := flow(0m)
denote the value of a maximum s-t-flow in G. Note that
F ≤ C := m · cmax. The goal is to find a search point x with
f(x) = (F, 0).

The objective space is depicted in Figure 5. A simple
observation about the structure of the search space is given
in the following proposition.

Proposition 2. For any search point x ∈ {0, 1}m it
holds that flow(x) + cost(x) ≥ F . Furthermore, flow(x) +
cost(x) = F if and only if E(x) is a subset of some minimum
cut.

Proof. Assume flow(x) + cost(x) < F holds for some
x ∈ {0, 1}m. By the definition of flow(·), there exists a
maximum flow in G(x) of value flow(x). This maximum
flow induces a minimum cut in G(x) of the same value. The
union of the edges crossing this cut and the edges in E(x)

x∗ = (F, 0)

flow

cost

(0, F)

Figure 5. Objective space of the fitness function f(x) =
(cost(x), f low(x))

is a cut for the original graph G and the value of this cut
is flow(x) + cost(x) < F . Since F is the value of a maxi-
mum flow for G, this is a contradiction to the maximum-flow
minimum-cut theorem.

Now suppose flow(x) + cost(x) = F holds. By the same
arguments, there is a cut in G that contains E(x). Since the
value of this cut equals F , it is a minimum cut. Conversely,
suppose E(x) is a subset of some minimum cut S. Then
S \ E(x) is a minimum cut in G(x) with value flow(x).
Hence, F =

P
e∈S c(e) =

P
e∈E(x) c(e) +

P
e∈S\E(x) c(e) =

cost(x) + flow(x).

We denote by L = {x ∈ {0, 1}m | flow(x) + cost(x) = F}
the set of search points whose objective vectors lie on the line
given by the two objective values (0, F) and (F, 0). Due to
Proposition 2 these search points represent subsets of edges
of a minimum cut.

Examples for simple multi-objective evolutionary algo-
rithms (MOEAs) that have been analyzed before are SEMO
and GSEMO [7, 12, 15]. The GSEMO algorithm can be
described as follows. Note that the fitness function f is
vector-valued and the ≤-comparison is to be understood
component-wise.

Algorithm 2. GSEMO (Global Simple Evolutionary
Multi-objective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

• choose x ∈ P uniformly at random.
• create an offspring x′ by flipping each bit of x with

probability 1/m.
• let P unchanged, if there is an x′′ ∈ P such that

f(x′′) ≤ f(x′) and f(x′′) 6= f(x′).
• otherwise, exclude all x′′ with f(x′) ≤ f(x′′) and add

x′ to P .

Note that the values of both components cost(·) and
flow(·) of the fitness function can be exponential in the in-
put size, which implies that GSEMO has to cope with a
Pareto front of exponential size. As long as the costs on the
edges are polynomially bounded in the number of vertices,
we can show that GSEMO is able to compute a minimum
cut in expected polynomial time when using the objective
functions mentioned above.

Theorem 3. The expected time until GSEMO working
on the fitness function f constructs a minimum cut is
O(Fm(log n + log cmax)).

Proof. The population size is upper bounded by F as
GSEMO keeps at each time at most one solution per fixed
flow value. First we consider the time until 0m has been
included into the population. Afterwards we study the time
to reach a minimum cut.

We apply the method of the expected multiplicative cost
decrease [16] with respect to the cost value. Let x ∈ P be the
solution in the population with the smallest cost. Consider
a mutation step that selects x and performs an arbitrary
1-bit flip. Such a step is called a good step. The probability
of a good step is lower bounded by Ω(1/F).

Each step removing an edge from the solution x leads to a
new solution with smaller cost and is accepted. Steps adding
an edge to x do not change the minimum cost. Therefore,
a randomly chosen 1-bit flip decreases the minimum cost on
average by a factor of at least 1− 1/m. This holds indepen-
dently of previous steps.

Hence, after N good steps, the expected minimum cost
value is bounded from above by (1− 1/m)N · cost(x). Since
cost(x) ≤ C, we obtain the upper bound (1 − 1/m)N · C.
Using the method of the expected multiplicative cost de-
crease the expected time until 0m has been discovered is
O(Fm log C) = O(Fm(log n + log cmax)).

Now we bound the time until a minimum cut has been
constructed. Once again we apply the method of the ex-
pected multiplicative cost decrease, now with respect to the
flow value. Note, that solutions in L are Pareto-optimal
which implies that minx∈P∩L flow(x) does not increase.

Let x the solution with the smallest flow value in P ∩L. A
mutation step that selects x and performs an arbitrary 1-bit
flip is called a good step. The probability of a good step is
lower bounded by Ω(1/F). Due to Proposition 2, E(x) is a
subset of a minimum cut. A minimum cut and therefore a
solution with objective vector (F, 0) can be obtained by in-
cluding the remaining edges of the corresponding minimum
cut. Therefore, a randomly chosen 1-bit flip decreases the
minimum flow value in P ∩ L on average by a factor of at
least 1− 1/m.

Hence, after N good steps, the expected minimum flow
value is bounded from above by (1−1/m)N ·flow(x). Since
flow(x) ≤ F ≤ C, we obtain the upper bound (1−1/m)N ·C.
Using the method of the expected multiplicative cost de-
crease the expected time until a minimum cut has been ob-
tained is O(Fm(log n + log cmax)) which proves the theo-
rem.

The upper bound given for GSEMO is pseudo-polynomial
in the input size. In the following we consider a MOEA
that ensures diversity by using the concept of ε-dominance
introduced by Laumanns et al. [11]. Here the objective
space is partitioned into axes-parallel boxes and each box
includes at each generation at most one search point. It
turns out that in our setting it is sufficient to partition the
objective space with respect to the second objective. Hence,
we use stripes instead of boxes.

We partition the objective space into stripes with respect
to the flow value by using the function b : {0, 1}m 7→ N with

b(x) :=
j

log(1+flow(x))
log(1+ε)

k
, where ε > 0 is a parameter that de-

termines the size of the stripes. Let B := maxx∈{0,1}m b(x).
Now the DEMO algorithm can be described as follows.

Algorithm 3. DEMO (Diversity Evolutionary Multi-ob-
jective Optimizer)
1. Choose x ∈ {0, 1}m uniformly at random.
2. Determine f(x) and initialize P := {x}.
3. Repeat

• choose x ∈ P uniformly at random.
• create an offspring x′ by flipping each bit of x with

probability 1/m.
• let P unchanged, if there is an x′′ ∈ P such that

f(x′′) ≤ f(x′) and f(x′′) 6= f(x′) or if there is an
x′′ ∈ P such that b(x′′) = b(x′) and cost(x′′)
+ flow(x′′) < cost(x′) + flow(x′).

• otherwise, exclude all x′′ where f(x′) ≤ f(x′′) or
b(x′′) = b(x′) and add x′ to P .

Similar to the GSEMO algorithm, DEMO discards a new
search point x′ if it is dominated by a search point x′′ ∈ P
with different objective vector. Additionally, x′ is discarded
if there is a search point x′′ ∈ P which falls in the same
stripe and is closer to the line through (0, F) and (F, 0). If
this is not the case, as before, all dominated search points
in the population are removed. Additionally, we ensure that
the population contains at most one search point for each
stripe.

The following upper bound on the population size of
DEMO can be shown in a similar way as in [11].

Proposition 3. The maximum population size of DEMO
is bounded by B = O(ε−1 log C).

Lemma 5. The expected time until DEMO working on
the fitness function f constructs a search point x∗ ∈ L is
O(mε−1(log2 n + log2 cmax)).

Proof. We proof the result by considering the expected
multiplicative decrease of ∆(x) := flow(x)+cost(x)−F . Let
x = argminz∈P ∆(z). Assume that x 6∈ L, i. e., ∆(x) > 0.
Note that ∆(x) does not increase.

Consider a mutation step that selects x and performs an
arbitrary 1-bit flip. Such a step is called a good step and its
probability is lower bounded by Ω(1/B). Denote by E′(x) ⊆
E(x) the set of edges that do not belong to a fixed minimum
cut of G. All 1-bit flips regarding the edges of E′(x) are
accepted and in total lead to a solution x∗ ∈ L. Therefore,
a randomly chosen 1-bit flip decreases the value ∆(x) on
average by a factor of at least 1− 1/m.

Hence, after N good steps, the expected value of ∆(x) is
bounded from above by (1−1/m)N ·C. Using the method of
the expected multiplicative cost decrease the expected time
until x′ with ∆(x′) = 0, i. e., x′ ∈ L, has been discovered is
O(Bm log C) = O(mε−1(log2 n+log2 cmax)). This concludes
the proof.

In the following, we show that we can obtain from each
search point x ∈ L which does not describe a minimum cut
a search point x′ ∈ L with b(x′) < b(x) by flipping a specific
bit if the value of ε is chosen in an appropriate way. Using
this property we are able to show that DEMO is able to
compute a minimum cut efficiently.

Proposition 4. Let ε ≤ 1/m and x ∈ L be a search point
with flow(x) > 0. Then there exists a 1-bit flip leading to a
search point x′ ∈ L with b(x′) < b(x).

Proof. Let y := flow(x). By Proposition 2, the set E(x)
is a subset of some minimum cut E(x∗). Since flow(x) > 0,
E(x) is a proper subset. Hence, there exists at least one 1-bit
flip leading to a search point x′ with flow(x′)+cost(x′) = F
and flow(x′) < flow(x). Among all such search points,
consider a point x′ that minimizes y′ := flow(x′).

Let k := |E(x∗)| − |E(x)| ≤ m. Since y′ was minimal,
y′ ≤ (1− 1

k
)y holds. Since ε ≤ 1

m
≤ 1

k
and k ≤ y, we have

(1 + ε)(1 + y′) ≤ 1 +
y

k2
+

„
1 +

1

k

«„
1− 1

k

«
y = 1 + y .

Taking the logarithm on both sides and division by log(1+ε)
implies b(x′) < b(x).

Theorem 4. Choosing ε ≤ 1/m, the expected time until
DEMO working on the fitness function f constructs a min-
imum cut is O(mε−2(log2 n + log2 cmax)).

Proof. Due to Lemma 5 a search point x ∈ L has been
included into the population after an expected number of
O(mε−1(log2 n + log2 cmax)) steps. Hence, it is sufficient to
consider the search process after having found a search point
x ∈ L.

The archiving strategy of DEMO guarantees that each
strip containing a search point from P ∩L will contain such
a (maybe different) search point in all future generations.
Therefore, minx∈P∩L b(x) will never increase during the run
of the algorithm.

Since the population size is bounded by B, the probability
of picking a search point x ∈ L with minimal b-value among
the search points in L is Ω(1/B). By Proposition 4, there
exists at least one 1-bit flip leading to a search point x′ ∈
L with b(x′) < b(x). The probability to generate such a
search point x′ is Ω(1/m). After at most B such steps,
the b-value is zero implying that we have found a minimum
cut. Hence, the expected time to obtain a minimum cut is
O(B2m) = O(mε−2 log2 C) = O(mε−2(log2 n + log2 cmax)).
This concludes the proof.

Note, that the upper bound is O(m3(log2 n + log2 cmax))
for ε = Θ(1/m) and polynomial as long as ε = 1/poly(m)
for a polynomial poly(m).

4. CONCLUSIONS

The computation of a minimum s-t-cut for a given weighted
graph arises in several applications and many constrained
variants are difficult to solve. We have studied how evo-
lutionary algorithms can cope with this problem. Our in-
vestigations show that single-objective approaches fail to
achieve optimal solutions. In contrast to this the proposed
multi-objective approach points out the connection between
the two contrasting objectives cost and feasibility. This ap-
proach leads to a polynomial runtime as long as the objec-
tive space is polynomially bounded. To overcome the latter
problem we apply the concept of ε-dominance which leads
to an expected polynomial runtime.

We believe that the gained insights might turn out to
be useful for solving NP-hard variants of the problem in
the context of multicommodity flow networks. In this con-
text, computing a maximum flow is a relatively easy problem
while finding a minimum cut is NP-hard. In a subsequent
work we want to apply our bi-criteria approach in order to
solve the NP-hard minimum multicut problem.

References
[1] G. Baier. Flows with Path Restrictions. PhD thesis, TU

Berlin, 2003.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. MIT Press, 2nd
edition, 2001.

[3] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D.
Seymour, and M. Yannakakis. The complexity of mul-
titerminal cuts. SIAM J. on Comp., 23:864–894, 1994.

[4] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theor. Comput.
Sci., 276:51–81, 2002.

[5] A. Duarte, Á. Sánchez, F. Fernández, and R. Cabido. A
low-level hybridization between memetic algorithm and
VNS for the max-cut problem. In Proc. of GECCO ’05,
pages 999–1006, 2005.

[6] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and
C. Witt. Approximating covering problems by random-
ized search heuristics using multi-objective models. In
Proc. of GECCO ’07, pages 797–804, 2007.

[7] O. Giel. Expected runtimes of a simple multi-objective
evolutionary algorithm. In Proc. of CEC ’03, IEEE
Press, pages 1918–1925, 2003.

[8] O. Giel and I. Wegener. Evolutionary algorithms
and the maximum matching problem. In Proc. of
STACS ’03, pages 415–426, 2003.

[9] T. Jansen and I. Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and when
to reject strings of the same fitness. IEEE Trans. Evo-
lutionary Computation, 5(6):589–599, 2001.

[10] B. Korte and J. Vygen. Combinatorial Optimization:
Theory and Algorithms. Springer, 3rd edition, 2005.

[11] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Com-
bining convergence and diversity in evolutionary mul-
tiobjective optimization. Evolutionary Computation,
10(3):263–282, 2002.

[12] M. Laumanns, L. Thiele, and E. Zitzler. Running time
analysis of multiobjective evolutionary algorithms on
pseudo-boolean functions. IEEE Trans. Evolutionary
Computation, 8(2):170–182, 2004.

[13] K.-H. Liang, X. Yao, C. S. Newton, and D. Hoffman.
A new evolutionary approach to cutting stock prob-
lems with and without contiguity. Computers & OR,
29(12):1641–1659, 2002.

[14] F. Neumann. Expected runtimes of a simple evolution-
ary algorithm for the multi-objective minimum span-
ning tree problem. European Journal of Operational Re-
search, 181(3):1620–1629, 2007.

[15] F. Neumann and I. Wegener. Minimum spanning trees
made easier via multi-objective optimization. Natural
Computing, 5(3):305–319, 2006.

[16] F. Neumann and I. Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning
tree problem. Theor. Comput. Sci., 378(1):32–40, 2007.

[17] J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-
world glass cutting problem. In Proc. of EvoCOP ’04,
pages 165–176. Springer, 2004.

[18] J. Reichel and M. Skutella. Evolutionary algorithms
and matroid optimization problems. In Proc. of
GECCO ’07, pages 947–954, 2007.

[19] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Proc. of
STACS ’05, pages 44–56, 2005.

