
Particle Swarm Optimization with Velocity

Adaptation

Sabine Helwig∗, Frank Neumann†, and Rolf Wanka∗

∗Department of Computer Science, University of Erlangen-Nuremberg, Germany

{sabine.helwig, rwanka}@informatik.uni-erlangen.de
†Max-Planck-Institut für Informatik, Saarbrücken, Germany

fne@mpi-inf.mpg.de

Abstract—Particle swarm optimization (PSO) algorithms have
gained increasing interest for dealing with continuous optimiza-
tion problems in recent years. Often such problems involve
boundary constraints. In this case, one has to cope with the
situation that particles may leave the feasible search space. To
deal with such situations different bound handling methods have
been proposed in the literature and it has been observed that
the success of PSO algorithms depends on a large degree on
the used bound handling method. In this paper, we propose an
alternative approach to cope with bounded search spaces. The
idea is to introduce a velocity adaptation mechanism into PSO
algorithms that is similar to step size adaptation used in evolution
strategies. Using this approach we show that the bound handling
method becomes less important for PSO algorithms and that
using velocity adaptation leads to better results for a wide range
of benchmark functions.

I. INTRODUCTION

Particle swarm optimization [8], [9] is a population-based

stochastic search algorithm which has become very popular

for solving continuous optimization problems in recent years.

The algorithm is inspired by the interactions observed in social

groups such as bird flocks, fish schools, or human societies.

Continuous optimization problems are often defined on a

bounded subspace of R
n. Search points that do not belong

to this area are considered as infeasible. One question is how

to deal with particles that reach the infeasible region. Various

methodologies were proposed in the literature, e.g., [3], [1].

Such methods often handle infeasible particles by guiding

them towards the feasible region of the search space. Recently,

it was observed that many particles leave the feasible region

of the underlying search space at the beginning of the opti-

mization process [7].

Our goal is to show how to avoid that many particles

leave the feasible region of the parameter space of a bounded

continuous optimization problem. We consider the model

examined in [7] and point out that the problem of constructing

many infeasible solutions occurs due to high velocities of the

particles. Based on this observation it seems to be natural to

place upper bounds on the velocities of the particles. To deal

with the fact that sometimes high velocities are needed for

an efficient search process, we propose to adjust the length

of a particle’s velocity vector in a similar way to step size

adaptation in evolution strategies [11], [12]. This has the effect

that if the algorithm is not able to construct feasible solutions

by high velocities, the velocities become smaller such that it is

more likely to produce feasible solutions within the bounded

search space. We examine the proposed velocity adaptation for

particle swarm optimization and compare it to a standard par-

ticle swarm optimizer [2]. The effects of using different bound

handling methods are investigated for the two approaches.

When using no bounds or constant bounds on the velocities,

the use of a suitable bound handling strategy is crucial for

the success of the algorithm, especially for high-dimensional

optimization problems. We show that our approach is almost

invariant with respect to the bound handling method which

means that we get more robust PSO algorithms by using

velocity adaptation. Further experimental studies show that

the use of velocity adaptation in PSO algorithms leads to

significantly better results for a wide range of benchmark

functions compared to a standard PSO approach.

The outline of the paper is as follows. In Section II,

we describe particle swarm optimization for bounded search

spaces. Section III considers the effect of velocities for staying

within the boundary constraints. Based on these investigations,

we introduce our novel particle swarm optimization algorithm

using velocity adaptation in Section IV. Experimental investi-

gations of our approach that point out the benefits of velocity

adaption are reported in Section V. Finally, we finish with

some concluding remarks.

II. PARTICLE SWARM OPTIMIZATION FOR

BOUND-CONSTRAINED SEARCH SPACES

In this paper, we consider optimization problems with

boundary constraints. This means that the search space S =
[lb1, ub1]×[lb2, ub2]×. . .×[lbn, ubn] consists of n real-valued

parameters (x1, . . . , xn) where each parameter xi, 1 ≤ i ≤ n,

is bounded with respect to some interval [lbi, ubi]. W.l.o.g.,

S = [−r, r]n, i. e., lbi = −r and ubi = r, 1 ≤ i ≤ n.

Particle swarm optimization (PSO) [8], [9] is a population-

based stochastic search algorithm for global optimization.

Each individual, denoted as particle, moves through the n-

dimensional search space S of an optimization problem with

objective function f : S ⊆ R
n → R. W.l.o.g., f is a

minimization problem. Each particle i has a position ~xi,t,

a velocity ~vi,t, a fitness value f(~xi,t), and remembers the

best position it has visited so far as its private guide ~pi,t.

Furthermore, each particle i is able to communicate with a

subset of all particles, which is denoted as its neighborhood.

In each iteration, it determines the best private guide of all its

neighbors, its local guide ~li,t. The iteration step is given by:

~vi,t = ω · ~vi,t−1 + c1 · ~r1 ⊙ (~pi,t−1 − ~xi,t−1) (1)

+ c2 · ~r2 ⊙ (~li,t−1 − ~xi,t−1)

~xi,t = ~xi,t−1 + ~vi,t (2)

where c1, c2, and ω are user-defined parameters, ⊙ denotes

component-wise vector multiplication, and ~r1 and ~r2 are

vectors of random real numbers chosen uniformly at random in

[0, 1], and independently drawn every time they occur. After

updating position and velocity of each particle, the private

guides of successful particles are updated.

There exist a lot of strategies to handle boundary constraints

in the literature, e.g., [3], [1], [14], [2], [7], among them:

• Infinity: Particles are allowed to move to an infeasible

solution. In this case, its position and velocity remain

unchanged, and the evaluation step is skipped [2].

• Absorb: Invalid particles are set on the nearest boundary

position. The respective velocity components are set to

zero [4].

• Random: Invalid components of a particle’s position

vector are set to a random value. Afterwards, the velocity

is adjusted to ~vi,t+1 = ~xi,t+1 − ~xi,t [14].

Previous studies analyzed the initial swarm behavior in bound-

constrained search spaces [7]. For three different velocity

strategies it was proven that many particles leave the search

space in the first iteration with overwhelming probability w. r. t.

the search space dimensionality. Hence, at least the initial

particle swarm behavior strongly depends on the chosen bound

handling mechanism. Experimental showed that modifying

the bound handling strategy leads to significant performance

differences on the investigated testproblems [7].

III. THEORETICAL OBSERVATIONS

In the following, we want to point out the effect of the

velocity values when dealing with bounded search spaces.

Our goal is to carry out a general investigation which is

independent of the function that should be optimized. To

examine the effect of maximum velocities we assume that the

particles of a PSO algorithm are drawn uniformly at random

from the underlying bounded search space. Additionally, we

assume that the velocities are drawn from a fixed interval

uniformly at random. Note that the given assumptions are

often fulfilled in the first iteration of a PSO algorithm. As

we do not take any properties of the optimization problem

into account, we do not present rigorous results for later

stages of the optimization process. Instead, we complement

the theoretical studies carried out in this section with experi-

mental investigations that confirm our findings. The following

theorem generalizes the results given in [7] to velocities that

are drawn uniformly at random from [− r
s
, r

s
]n, where s ≥ 1

is a parameter that determines the maximum velocity with

respect to one particular direction.

Theorem 1: Let ~xi,t−1 and ~vi,t be independently drawn

from a uniform distribution over [−r, r]n and [− r
s
, r

s
]n with

s ≥ 1, respectively, for an arbitrary particle i at time step t.
Then, the probability that particle i leaves the search space in

iteration t is 1−
(

1− 1
4s

)n
.

Proof: According to Eq. (2), particle i’s position at time

step t evaluates to ~xi,t = ~xi,t−1 + ~vi,t Hence, the d-th

component of ~xi,t, xi,t,d, is the sum of two independent

uniformly distributed random variables. The density function

fxi,t,d
of xi,t,d is trapezoidal and can be determined by

convolution to

fxi,t,d
(z) =



















s
4r2 z + s

4r
+ 1

4r
for − r − r

s
≤ z ≤ r

s
− r

1
2r

for − r + r
s

< z < r − r
s

− s
4r2 z + s

4r
+ 1

4r
for − r

s
+ r ≤ z ≤ r + r

s

0 otherwise .

Thus, the probability that particle i leaves the search space in

dimension d is

Prob(xi,t,d < −r) + Prob(xi,t,d > r)

=
∫ −r

−∞
fxi,t,d

(z)dz +
∫ ∞

r
fxi,t,d

(z)dz = 1
4s

.

As each component of ~xi,t is computed independently, the

probability p(n, s) that particle i becomes infeasible in itera-

tion t evaluates to

p(n, s) = Prob(~xi,t /∈ [−r, r]n) = 1−
(

1− 1

4s

)n

.

Note, that limn→∞(1 −
(

1− 1
4s

)n
) = 1 − e−

n
4s holds.

Theorem 1, shows that the probability that a particle leaves the

bounded search space crucially depends on the interval from

which the velocities are chosen. For example, if s is a constant,

the probability that a particle becomes infeasible rapidly

approaches 1 when the dimensionality n of the optimization

problem increases. On the other hand, s = n implies that, with

constant probability, particles do not leave the bounded search

space.

This theoretical result stresses the importance of adapting

velocities during the optimization process. Large velocities

are important for search space exploration and to gain large

improvements. However, the probability that particles leave

the search space increases when velocities are allowed to

grow large, which might deteriorate the swarm’s performance.

Reducing the particles’ velocities also reduces the probability

that particles become infeasible, down to a constant probability

if velocities are, for instance, drawn uniformly at random in

[− r
n
, r

n
]n. Hence, small velocities are necessary to cope with

situations where large improvements are not possible. These

considerations lead us to the PSO with velocity adaptation

presented in the subsequent section.

IV. PSO WITH VELOCITY ADAPTATION

The investigations carried out in the previous section have

pointed out the influence of velocities on the probability that

particles leave the bounded search space. It has been shown

how the probability of leaving the bounded search space

depends on the interval from which the velocity is chosen.

The probability of leaving the bounded search space decreases

when the velocities decrease. However, small velocities lead

to stagnation which implies that the algorithm achieves less

progress. Therefore, we propose to use velocity adaptation in

particle swarm optimization such that a large progress can be

achieved by high velocities. On the other hand, low velocities

should be attained if the algorithm observes to have difficulties

for finding better solutions. Our scheme for velocity adaptation

is similar to the use of step size adaptation known in the field

of evolution strategies. The idea is to increase velocities in the

case that the particles have found improvements during the last

iterations. In the case that no progress could be achieved, we

reduce the velocities. The amount of progress that has been

made during the last iterations is measured by the number of

successes. A success occurred if the private guide of a particle

is updated to its current position. This happens if the new

particle position is strictly better than its private guide. If the

new particle position and the private guide are of equal fitness,

the private guide is updated with probability 1/2.

Definition 1 (Success): A particle i is called successful in

iteration t if its private guide ~pi,t is updated to its current

position ~xi,t.

Our particle swarm optimizer using velocity adaptation is

shown in Algorithm 1. It distinguishes itself from standard

PSO approaches by using the described velocity adaptation

mechanism. The algorithm uses a counter SuccessCounter

which counts the number of successes according to Defini-

tion 1. In total n iterations are considered to decide whether

velocities are increased or decreased. The success rate of

the algorithm for a number of n iterations is given by

SuccessCounter/n. If the observed success rate is higher

than a given threshold (called SuccessProbability) the veloci-

ties are increased by a factor of 2 otherwise the velocities are

scaled down by a factor of 1/2. In most of our experimental

studies we will use a success probability of 0.2 which is

motivated by the 1/5-rule used in evolution strategies [11].

V. EXPERIMENTAL RESULTS

In the subsequent experimental analysis, our novel PSO with

velocity adaptation is compared to a standard particle swarm

optimizer [2]. For both approaches, the same parameter setting

was used: c1 = c2 = 1.496172, ω = 0.72984. As proposed by

Kennedy and Mendes, the swarm is connected via the so-called

von Neumann topology, a two-dimensional grid with wrap-

around edges [10]. The population size was set to m = 49 to

arrange the particles in a 7×7 grid. In the non-adaptive PSO,

velocity clamping was applied, i.e., each velocity component

is restricted to [−r . . . r] [5], where [−r . . . r]n is the parameter

space of the optimization problem to be solved. For the PSO

with velocity adaptation, a success probability of 0.2 was

used, and the initial velocity length was set to r. Note that

Experiment 2 and 3 study the effect of these parameters.

Experiment 1 compares our new algorithm to a standard

PSO. Therefore, six widely-used benchmarks, Sphere, Rosen-

brock, Rastrigin, Griewank, Schwefel 2.6, and Ackley (func-

Algorithm 1 PSO with velocity adaptation

Require: Objective function f : S ⊆ R
n → R,

SuccessProbability ∈ R[0,1], Initial velocity length l
1: Initialize particle positions, velocities, and private guides

2: Initialize neighborhood graph

3: SuccessCounter← 0
4: V elocityLength← l
5: Scale each initial velocity (up or down) so that its length

is exactly V elocityLength
6: for t := 1, . . . , maxIteration do

7: for i := 0, . . . , m− 1 do

8: Velocity update according to Eq. (1)

9: Scale velocity (up or down) so that its length is

exactly V elocityLength
10: Position update according to Eq. (2)

11: end for

12: for i := 0, . . . , m− 1 do

13: Update private guide of particle i
14: if (success(~xi,t, ~pi,t−1)) then

15: SuccessCounter← SuccessCounter + 1
16: end if

17: end for

18: if t mod n = 0 then

19: SuccessRate← SuccessCounter
n

20: if SuccessRate > SuccessProbability then

21: V elocityLength← 2 · V elocityLength
22: else

23: V elocityLength← V elocityLength
2

24: end if

25: SuccessCounter← 0
26: end if

27: end for

tion descriptions see, e.g., [2]), and the CEC 2005 benchmarks

f1–f14 [13], were used as 100- and 500-dimensional problems.

From the CEC 2005 benchmarks, all noisy functions and

all functions without search space boundaries were excluded.

Additionally, f8 was omitted because all swarms were equally

unsuccessful in preliminary experiments, and f12 was skipped

due to its high computation time. For all benchmarks, par-

ticles were initialized uniformly at random in the whole

search space. Historically, individuals are often initialized

in a subspace of the feasible region in order to avoid that

the performance of algorithms with center bias is overesti-

mated. E.g., the initialization space of the Sphere function

may be set to [50 . . . 100]n whereas the parameter space is

[−100 . . .100]n [2]. However, we do not use these asymmetric

initialization ranges due to the following two reasons: First, we

also investigate several CEC 2005 benchmarks which do not

have their global optimum at the center of the search space.

Hence, center bias can be identified considering all results.

Second, we explicitely do not want to design an algorithm

which has to explore outside the initialization space as such

behavior is not needed for real applications. Velocities were

initialized with half-diff initialization [7]. Experiment 2 and

3 are dedicated to the investigation of different parameter

settings for our new PSO algorithm, and were only run on

100-dimensional problems.

In our experimental study, each run was terminated after

300, 000 function evaluations, and each configuration was

repeated 50 times. The performance of two algorithms A and

B is compared by using the one-sided Wilcoxon rank sum

test with null-hypothesis H0 : FA(z) = FB(z), and the one-

sided alternative H1 : FA(z) < FB(z), where FX(z) is the

distribution of the results of algorithm X . The significance

level was set to α = 0.01. Additionally, we show the obtained

average objective values and corresponding standard errors

as well as convergence plots for selected functions where

appropriate.

A. Experiment 1: Comparison with a Standard PSO

The novel PSO with velocity adaptation was compared to

a standard particle swarm optimizer on all 100- and 500-

dimensional problems. The obtained average values and corre-

sponding standard errors are shown in Table I. The results of

the one-sided Wilcoxon rank sum tests are shown in Table II.

The experiment was conducted to investigate the following

two questions: First, which algorithm, the adaptive PSO or the

standard PSO, performs better on the chosen testbed? Second,

is the new algorithm more invariant with respect to the bound

handling mechanism than a standard particle swarm optimizer?

Table I shows that the adaptive PSO (denoted as Absorb-A,

Random-A, and Infinity-A, depending on the bound handling

method) provides superior average results than the used stan-

dard PSO (Absorb-S, Random-S, Infinity-S) on most testfunc-

tions. The only exceptions for the 100-dimensional functions

are Schwefel, f9, and f10. When solving the 500-dimensional

test suite, exceptions are again f9 and f10, but the relative

difference in the average objective values is diminished. In

some 500-dimensional cases, Random-A was not able to

provide satisfactory results for the optimization problem under

consideration. It was observed earlier that Random can distract

particles from the boundary [6] which might be a reason for

the bad performance of Random-A on some functions. Note

that in high-dimensional spaces, most of the volume is located

near the boundary (see, e.g., Theorem 3.1. in [6]), and a

search algorithm should therefore be able to explore boundary

regions. Table II lists the results of the one-sided Wilcoxon

rank sum test applied on the outcome of this experiment. The

tables show that the adaptive variants significantly outperform

their non-adaptive counterparts on much more testfunctions

(highlighted by bold numbers) than vice versa (italic numbers).

The second question was whether the adaptive PSO is more

invariant to the bound handling strategy compared to the

standard PSO. We already mentioned an exception: Random-

A was sometimes significantly outperformed by Absorb-A and

Infinity-A, especially in the 500-dimensional case. Hence, our

adaptive mechanism sometimes cannot prevent that particles

are not able to converge to boundary regions when using Ran-

dom bound handling. However, a comparison of the average

objective values presented in Table I shows that invariance

with respect to the bound handling strategy was nevertheless

improved: The obtained avarage objective values of the three

adaptive variants are mostly more similar to one another than

the ones of the non-adaptive PSO. This observation is con-

firmed by the results of the Wilcoxon rank sum test presented

in Table II: Especially in the 500-dimensional case, Absorb-

S, Random-S, and Infinity-S showed significant performance

differences among each other. Infinity-S was outperformed

by the other two variants in 15 of 16 functions. Although

performance differences can be observed among the adaptive

PSOs as well, they occur less often. Absorb-A and Infinity-A

provided solutions of similar quality on most 500-dimensional

problems. We conclude that we partly achieved the second

goal, but there is still room for improvement. Experiment 3

will show that initializing the velocity length to a smaller value

can enhance invariance with respect to the bound handling

strategy but also deteriorate performance.

Summarized, PSO with velocity adaptation yielded superior

results than a standard PSO on most of the investigated 100-

and 500-dimensional benchmarks. Invariance with respect to

the bound handling mechanism was enhanced but is still not

perfect.

B. Experiment 2: Success probability

The adaptation mechanism of our adaptive PSO is similar

to the well-known 1/5 rule of Rechenberg [11]: Whenever the

success rate in the past n iterations exceeds 1/5, the velocity

is doubled, otherwise it is halved. Of course, other values

besides 1/5 can be chosen as success probablity threshold.

We additionally investigated the following settings: 0.01, 0.1,

0.5, and 0.8. In Figure 1, two representative runs are shown.

Setting the success probability to 0.5 or 0.8 performed bad

on most benchmarks, and can therefore not be recommended.

The performance of 0.1 and 0.2 was quite similar with slight

advantage for 0.2 considering average objective values and

the result of the Wilcoxon rank sum tests for all functions.

The behavior of choosing 0.01 differs from the other set-

tings: Convergence is very slow, often too slow to obtain

satisfactory results using 300, 000 function evaluations (which

already is quite much). When applying such a low success

probability, we expect velocities to grow large. This can

lead to a rather random behavior of the whole swarm and

prevent convergence, as shown in Figure 1 (top) and observed

on approximately 7 functions. On the other hand, the same

behavior is advantageous for other problems, see Figure 1

(bottom): In these cases, using high success probabilities led

to premature convergence, as velocities are decreased further

and further if the swarm is not successful. However, the

swarms using a threshold success probability of 0.01 keep

exploring and finally found solutions of much better quality on

approximately 6 of the investigated 16 benchmark functions.

Summarized, both very low and very high success probability

thresholds cannot be recommended. Using a very low success

probability sometimes leads to exceptionally good results, but

also often deteriorates particle swarm performance. However,

TABLE I
EXPERIMENTAL RESULTS ON THE 100-DIMENSIONAL BENCHMARKS. AVERAGE OBJECTIVE VALUES AND STANDARD ERRORS ARE SHOWN. THE BEST

OBJECTIVE VALUES ARE PRESENTED TOGETHER WITH THE FUNCTION NAME.

100-dimensional benchmarks
Sphere (0) Rosenbrock (0) Ackley (0) Griewank (0) Rastrigin (0) Schwefel (≈ -41898.3)

Absorb-S 6.0693e-06±1.175e-07 191.06±8.785 1.3959±0.11837 2.765e-03±7.7612e-04 282.2±4.504 -27841±242.12

Random-S 6.0783e-06±1.2964e-07 195.45±8.2053 1.7332±0.10218 3.7511e-03±7.7485e-04 239.56±4.6447 -24826±207.29

Infinity-S 6.2083e-06±1.4284e-07 221.06±7.0927 1.5847±0.1094 7.2517e-03±2.5285e-03 276.34±5.6791 -23705±234.82

Absorb-A 1.0473e-06±9.3267e-09 114.03±4.7795 3.7094e-06±1.3119e-08 2.7088e-03±8.7574e-04 93.91±2.3929 -24430±180.2

Random-A 1.0589e-06±1.0115e-08 120.75±4.5423 3.6963e-06±1.5878e-08 1.4789e-03±6.1713e-04 87.716±2.1884 -22341±170.7

Infinity-A 1.0437e-06±9.9384e-09 107.08±3.6154 3.7032e-06±1.7861e-08 5.9275e-04±3.4177e-04 93.499±2.3445 -22837±187.56

f1 (-450) f2 (-450) f3 (-450) f5 (-310) f6 (390) f9 (-330)

Absorb-S -450±0 25223±1166.3 39163000±1884400 27545±501.09 594.24±8.27 29.387±8.8699

Random-S -450±0 23035±973.35 78163000±5844400 30534±497.03 590.71±8.142 48.163±6.6587

Infinity-S -450±0 9951.7±395.9 17457000±727450 33148±485.31 593.54±6.4731 226.72±12.379

Absorb-A -450±0 286.74±27.998 8120300±222840 23100±333.67 511.6±5.3632 147.44±10.078

Random-A -450±0 1685.6±733.36 1.1002e+08±12771000 35603±639.93 530.09±6.3345 160.73±6.9788

Infinity-A -450±0 269.45±33.939 7234600±154480 26836±355.33 517.21±5.576 174.25±10.714

f10 (-330) f11 (-460) f13 (-130) f14 (-300)

Absorb-S 30.313±7.7389 217.56±0.81253 -69.427±1.9555 -253.47±0.058467

Random-S 98.299±8.9825 221.94±0.88144 -68.36±1.5856 -253.7±0.068529

Infinity-S 261.59±13.889 224.14±0.94733 -69.666±1.6095 -253.54±0.053858

Absorb-A 85.767±9.1288 185.36±1.1865 -112.95±0.45879 -254.01±0.070051

Random-A 149.52±10.355 195.1±1.2822 -113.28±0.36477 -254.13±0.060984

Infinity-A 195.87±10.924 185.43±1.2738 -113.12±0.48073 -254.15±0.085889

500-dimensional benchmarks
Sphere (0) Rosenbrock (0) Ackley (0) Griewank (0) Rastrigin (0) Schwefel (≈ -209491.5)

Absorb-S 1669.3±236.6 397590±32299 9.1571±0.13512 15.692±1.9949 1917.1±29.846 -122640±847.19

Random-S 1523.8±136.19 877140±157910 9.4522±0.16661 15.428±1.1851 1642±25.489 -106940±647.94

Infinity-S 780890±5098.7 2.3589e+09±22756000 20.057±0.018442 7023.7±47.232 6704.4±21.475 -11628±276.33

Absorb-A 0.54291±0.15378 2188±45.632 1.712±0.030091 0.19666±0.050727 422.85±13.534 -99575±981.1

Random-A 0.8328±0.35029 2232.3±53.622 1.7225±0.028023 0.12122±0.029484 375.63±10.86 -88646±985.12

Infinity-A 0.4738±0.095705 2210.7±36.524 1.762±0.025693 0.09308±0.017517 408.62±11.456 -93069±973.41

f1 (-450) f2 (-450) f3 (-450) f5 (-310) f6 (390) f9 (-330)

Absorb-S 3260.3±296.88 2369600±32679 1.6426e+09±28943000 -310±0 6.1811e+08±86998000 3288.4±40.28

Random-S 31185±1302.3 2556700±40344 3.7348e+09±1.2208e+08 -310±0 1.5943e+09±1.5081e+08 3218.5±29.644

Infinity-S 2174600±7890.1 97764000±5238200 1.1268e+11±1.2292e+09 -310±0 2.0502e+12±1.4785e+10 10220±23.611

Absorb-A -430.82±4.9622 1071200±18936 4.795e+08±5962900 -310±0 705350±83435 3306.4±18.958

Random-A 201560±4265.1 2999200±123610 6.3402e+09±1.2971e+08 -310±0 4.5585e+09±4.7332e+08 3417±18.45

Infinity-A -414.15±20.668 866340±10705 4.2855e+08±6008000 -310±0 309230±58497 3352.9±20.115

f10 (-330) f11 (-460) f13 (-130) f14 (-300)

Absorb-S 4959.3±74.314 909.67±2.2174 10650±1854.9 -54.763±0.050616

Random-S 5560.7±74.102 918.3±1.844 3594.6±227.73 -54.835±0.062736

Infinity-S 16972±48.023 1025.1±1.5096 45526000±1002400 -52.774±0.05418

Absorb-A 7881.6±46.142 751±3.701 404.46±10.313 -60.306±0.1963

Random-A 7975.7±64.224 849.35±5.8459 409.14±11.209 -59.999±0.15094

Infinity-A 7803.3±39.094 756.8±3.822 406.86±11.149 -60.105±0.14006

values of 0.1 or 0.2 delivered solutions of good quality on

most investigated problems.

C. Experiment 3: Initialization of velocity length l

The initial velocity length determines the exploration behav-

ior of the particle swarm at the beginning of the optimization

process. Choosing very small initial velocities can result in

premature convergence on local optima. Two different settings

were tested: l = r and l = r/
√

n, where [−r . . . r]n is the pa-

rameter space of the problem to be solved. The second setting

is denoted as init2. Comparing the obtained average objective

values (not presented here), initializing the velocity length to

l = r provided better results on most benchmark functions.

In the other cases, results of similar quality were achieved.

Especially for Schwefel, f9 and f10, great performance losses

could be recognized when initializing the velocity length to

l = r/
√

n. However, as indicated by the theoretical study in

Section III, choosing l = r/
√

n (which corresponds to the

order r/n per dimension) results in a PSO algorithm which

is more invariant with respect to the bound handling method:

Table II (right) shows that Absorb-init2, Random-init2, and

Infinity-init2 less often significantly differed in performance

among each other than Absorb-A, Random-A, and Infinity-A.

However, the difference is rather small so that initializing

velocities to l = r is to be preferred due to the desired

explorative behavior of a search algorithm at the beginning

of the optimization process. Considering Table II (right), it

is clear that the Absorb-A, Random-A, and Infinity-A variants

more often significantly outperform the corresponding init2

algorithms than vice versa. In the three cases in which the

init2 variants performed significantly better than the adaptive

PSO with l = r (Sphere, Ackley, and Griewank), both settings

provided a satisfactory average solution quality very close to

the global optimum.

VI. CONCLUSION

Particle swarm optimization algorithms have found many

applications in solving continuous optimization problems. Of-

ten such problems have boundary constraints and it has been

observed that PSO algorithms have difficulties when dealing

TABLE II
SUMMARY OF ONE-SIDED WILCOXON RANK SUM TEST WITH SIGNIFICANCE LEVEL 0.01 FOR EXPERIMENT 1 AND 3. FOR EACH ALGORITHMIC

COMBINATION (A, B), THIS MATRIX SHOWS HOW OFTEN A SIGNIFICANTLY OUTPERFORMED B. Example: ENTRY 6 IN THE FIRST ROW OF THE FIRST

TABLE SHOWS THAT ABSORB-S SIGNIFICANTLY OUTPERFORMED INFINITY-S ON 6 BENCHMARKS.

Experiment 1: 100D

1 2 3 4 5 6

Absorb-S (1) 0 5 6 3 5 3

Random-S (2) 1 0 5 1 4 3

Infinity-S (3) 2 2 0 0 3 1

Absorb-A (4) 12 12 14 0 7 3

Random-A (5) 10 10 12 0 0 1

Infinity-A (6) 11 12 14 1 4 0

Total number of benchmarks: 16

Experiment 1: 500D

1 2 3 4 5 6

Absorb-S (1) 0 8 15 2 7 3

Random-S (2) 2 0 15 3 6 3

Infinity-S (3) 0 0 0 0 0 0

Absorb-A (4) 12 12 15 0 7 1

Random-A (5) 8 8 15 1 0 1

Infinity-A (6) 12 12 15 3 7 0

Total number of benchmarks: 16

Experiment 3

1 2 3 4 5 6

Absorb-A (1) 0 7 3 8 9 7

Random-A (2) 0 0 1 6 9 6

Infinity-A (3) 1 4 0 8 9 9

Absorb-init2 (4) 3 6 3 0 4 0

Random-init2 (5) 3 3 3 0 0 0

Infinity-init2 (6) 3 6 3 0 3 0

Total number of benchmarks: 16

 0

 20000

 40000

 60000

 80000

 100000

 0 50000 100000 150000 200000 250000 300000

O
b

je
c
ti
v
e

 v
a

lu
e

 (
f2

)

Function evaluations

Absorb-A-0.01
Absorb-A-0.1
Absorb-A-0.2
Absorb-A-0.5
Absorb-A-0.8

 0

 200

 400

 600

 800

 1000

 0 50000 100000 150000 200000 250000 300000

O
b

je
c
ti
v
e

 v
a

lu
e

 (
f9

)

Function evaluations

Absorb-A-0.01
Absorb-A-0.1
Absorb-A-0.2
Absorb-A-0.5
Absorb-A-0.8

Fig. 1. Representative runs (top: f2, bottom: f9) of the adaptive PSO with
different success probabilities (Experiment 2). In the plot, average objective
values are shown. Vertical bars (very small) depict the standard error.

with such problems as many particles leave the feasible region

of the search space due to high velocities. Because of this,

different bound handling methods have been proposed in the

literature and it has been observed that these methods have

a large impact on the success of particle swarm optimization

algorithms.

Our theoretical investigations explain the effect of velocity

values from a theoretical point of view. Based on these obser-

vations, we proposed a particle swarm optimization algorithm

which uses velocity adaptation to deal with bound-constrained

search spaces. This novel algorithm deals with boundary

constraints by decreasing the velocities when no progress

can be achieved. Our experimental analysis shows that the

influence of the used bound handling method becomes less

important when using velocity adaptation. Furthermore, the

use of velocity adaptation leads to significantly better results

for many benchmark functions in comparison to a standard

particle swarm optimizer.

REFERENCES

[1] Julio E. Alvarez-Benitez, Richard M. Everson, and Jonathan E. Field-
send. A MOPSO Algorithm Based Exclusively on Pareto Dominance
Concepts. In Evolutionlary Multi-Criterion Optimization, pages 459–
473, 2005.

[2] Daniel Bratton and James Kennedy. Defining a Standard for Particle
Swarm Optimization. In Proc. IEEE Swarm Intelligence Symp., pages
120–127, 2007.

[3] Maurice Clerc. Confinements and Biases in Particle Swarm Optimiza-
tion. http://clerc.maurice.free.fr/pso/, 2006.

[4] Maurice Clerc. Particle Swarm Optimization. ISTE Ltd, 2006.
[5] Russell C. Eberhart and Yuhui Shi. Comparing Inertia Weights and

Constriction Factors in Particle Swarm Optimization. In Proceedings of

the 2000 Congress on Evolutionary Computation, pages 84–88, 2000.
[6] Sabine Helwig and Rolf Wanka. Particle Swarm Optimization in High-

Dimensional Bounded Search Spaces. In Proc. IEEE Swarm Intelligence

Symp., pages 198–205, 2007.
[7] Sabine Helwig and Rolf Wanka. Theoretical Analysis of Initial Particle

Swarm Behavior. In Proc. of the 10th Int. Conference on Parallel

Problem Solving from Nature (PPSN08), pages 889–898. Springer, 2008.
[8] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization.

In Proc. of the IEEE Int. Conf. on Neural Networks, volume 4, pages
1942–1948, 1995.

[9] James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan
Kaufmann, 2001.

[10] James Kennedy and Rui Mendes. Population Structure and Particle
Swarm Performance. In Proceedings of the IEEE Congress on Evol.

Computation, pages 1671–1676, 2002.
[11] Ingo Rechenberg. Evolutionsstrategie – Optimierung technischer Sys-

teme nach Prinzipien der biologischen Evolution. Frommann-Holzboog
Verlag, 1973.

[12] Hans-Paul Paul Schwefel. Evolution and Optimum Seeking: The Sixth

Generation. John Wiley & Sons, Inc., New York, NY, USA, 1993.
[13] Ponnuthurai N. Suganthan, Nikolaus Hansen, Jing J. Liang, Kalyanmoy

Deb, Y.P. Chen, Anne Auger, and S. Tiwari. Problem Definitions and
Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization. KanGAL Report 2005005, Nanyang Technological Uni-
versity, Singapore, 2005.

[14] Wen-Jun Zhang, Xiao-Feng Xie, and De-Chun Bi. Handling Boundary
Constraints for Numerical Optimization by Particle Swarm Flying in
Periodic Search Space. In Proc. of the IEEE Congress on Evol.

Computation, volume 2, pages 2307–2311, 2004.

