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ABSTRACT
Submodular functions allow to model many real-world optimisa-

tion problems. This paper introduces approaches for computing

diverse sets of high quality solutions for submodular optimisation

problems with uniform and knapsack constraints. We first present

diversifying greedy sampling approaches and analyse them with

respect to the diversity measured by entropy and the approxima-

tion quality of the obtained solutions. Afterwards, we introduce

an evolutionary diversity optimisation (EDO) approach to further

improve diversity of the set of solutions. We carry out experimental

investigations on popular submodular benchmark problems and

analyse trade-offs in terms of solution quality and diversity of the

resulting solution sets.
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1 INTRODUCTION
Submodular functions play a key role in the area of optimisation

as they allow to model many real-world optimisation problem that

encounter diminishing returns [13, 26]. In many real-world applica-

tions it is desirable to have a set of high quality solutions available

that differ with respect to their design. This allows decision makers

to see different options not quantified as part of the formulated

objectives and choose from a wide range of options achieving the

desired outcome. Computing diverse sets of solutions has gained

some attention in the artificial intelligence community with respect
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to planning problems [8, 9]. In the case of top-𝑘 planning, the goal

is to obtain a set of solutions such that no better solution outside

that set exists [10]. Solutions for this problem are obtained by itera-

tively forbidding solutions or solution components. Furthermore,

the design of diverse sets of policies has been investigated [16] and

gradient-based methods have been developed to diversify existing

approaches for the creation of policies.

Evolutionary computation approaches provide a more flexible

way of creating high quality diverse sets of solutions as diver-

sity measures can directly been imposed on the population. Com-

puting diverse sets of high quality solutions for a given problem

has recently gained increasing interest in the area of evolutionary

computation under the notions evolutionary diversity optimisa-

tion (EDO) [6, 19, 20, 25] and quality diversity (QD) [14, 17]. Both

approaches have been mainly used for design problems [7], and

only recently been applied to classical combinatorial optimisation

problems. In terms of combinatorial optimisation problems, the

computation of high quality diverse sets of solutions for the Trav-

eling Salesperson Problem has been considered [2].

In this paper, we propose new approaches for creating diverse

sets of high quality solutions for submodular optimisation prob-

lems. The classical problem of maximising a monotone submodular

function under a given uniform constraint can be solved by a sim-

ple greedy algorithm given in [18]. Extensions have been made in

terms of knapsack and more general cost constraints [26] as well as

results for functions being close to submodular have been obtained.

Here generalized greedy approaches that pick in each step an ele-

ment with a largest marginal gain are used. Furthermore, greedy

algorithms also perform well for monotone submodular functions

with special types of chance constraints [3].

In recent years, it has been shown for a variety of the before-

hand mentioned problems that evolutionary multi-objective algo-

rithms using a Pareto optimisation approach [5, 24] can achieve the

same performance guarantees as greedy approaches, but perform

much better in practice in a wide range of settings [21, 23]. These

approaches relax a given constraint into an additional objective

which enables evolutionary multi-objective algorithms to imitate

the behaviour of greedy algorithms while also benefiting from local

search abilities and interactions in the population. An overview on

Pareto optimisation approaches for submodular optimisation can

be found in the recent book by Zhou et al. [27].

1.1 Our contribution
We examine approaches for creating diverse sets of high quality

solutions for submodular optimisation problems. The class of ob-

jective functions that we study are monotone and 𝛼 𝑓 -submodular
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where 𝛼 𝑓 ∈ [0, 1] measures how close a function 𝑓 is to being sub-

modular. We are interested in sets of solutions where each solution

fulfills a given approximation criterion and aim to maximise the

diversity of the set of solutions obtained.

We present approaches for computing diverse sets of solutions

for monotone functions under given constraints that all are of

high quality. First, we introduce diversifying greedy sampling ap-

proaches for monotone functions with a uniform and a knapsack

constraint. Our approaches make use of established greedy ap-

proaches, but allow to create diverse sets of solutions while still al-

most maintaining the approximation quality achieved by the greedy

approaches. Our theoretical analysis provably shows that solutions

constructed by our diversifying greedy sampling approaches only

loose a small amount in terms of approximation ratio compared to

standard greedy approaches but are able to construct many different

solutions.

Afterwards, we introduce an evolutionary diversity optimisation

(EDO) approach to maximise diversity under the condition that all

solutions fulfill the given quality criterion. We consider the classical

entropy measure to measure the diversity of a given set of solutions.

Examining the maximal entropy achievable by our greedy sampling

approaches, we show that there is room for improving the entropy

of the obtained solution sets in many situations. Therefore, we

combine the greedy sampling approaches with an EDO approach.

Our combined approach for creating high quality diverse sets of

solutions first runs one of the developed diversifying greedy sam-

pling approaches and uses EDO to increase the entropy diversity of

the obtained set while maintaining the guaranteed approximation

quality of the diversifying greedy sampling approaches.

We show in our experimental investigations using real-word

graphs that the EDO approach allows to significantly improve the

diversity of the set of solutions obtained by diversifying greedy

sampling for the classical submodular coverage problem. Further-

more, our experimental results reveal the trade-offs with respect to

the diversity of the obtained sets and the quality guaranteed by the

diversifying greedy sampling approaches. We also point out how

the population size which determines the size of the set of solutions

to be obtained increases the diversity of the resulting sets.

The paper is structured as follows. In Section 2, we introduce the

problem of computing sets of high quality solutions. In Section 3

and 4, we present our diversifying greedy sampling approaches

when working with uniform constraints and knapsack constraints.

We examine the short-comings of these approaches and introduce

an evolutionary diversity optimisation approach to increase the

diversity of our solutions sets in Section 5. In Section 6, we re-

port on our experimental results for different types of submodular

optimisation problems. Finally, we finish with some concluding

remarks.

2 PROBLEM FORMULATION
Given a set 𝑉 = {𝑣1, . . . , 𝑣𝑛}, an objective function 𝑓 : 2𝑉 → R≥0,
a cost function 𝑐 : 2𝑉 → R≥0 together with a constraint 𝑐 (𝑋 ) ≤ 𝐵,

the classical goal in optimisation is to find a solution

𝑂𝑃𝑇 = arg max

𝑋 ⊆𝑉
{𝑓 (𝑋 ) | 𝑐 (𝑋 ) ≤ 𝐵}.

In this paper, we assume that each single element on its own does

not violate the constraint, i.e. we have 𝑐 ({𝑣𝑖 }) ≤ 𝐵, 1 ≤ 𝑖 ≤ 𝑛, as

elements violating the constraint can be completely ignored.

Let 𝐴 and 𝐵 be two arbitrary sets such that 𝐴 ⊆ 𝐵 ⊆ 𝑉 holds.

The function 𝑓 is monotone iff we have 𝑓 (𝐴) ≤ 𝑓 (𝐵). The function
𝑓 is submodular if for any 𝑣 ∉ 𝐵,

𝑓 (𝐴 ∪ {𝑣}) − 𝑓 (𝐴) ≥ 𝑓 (𝐵 ∪ {𝑣}) − 𝑓 (𝐵)

holds. The submodularity ratio 𝛼 𝑓 [23, 26] of a given function 𝑓 is

defined as

𝛼 𝑓 = min

𝐴⊆𝐵,𝑣∉𝐵
𝑓 (𝐴 ∪ {𝑣}) − 𝑓 (𝐴)
𝑓 (𝐵 ∪ {𝑣}) − 𝑓 (𝐵) .

We call a function 𝑓 , 𝛼 𝑓 -submodular in this case. Note, that 𝑓

is submodular iff 𝛼 𝑓 = 1 holds and that we have 𝛼 𝑓 ∈ [0, 1] in
general. Throughout this paper, we assume that 𝑓 is is monotone

and analyze approximation guarantees in terms of 𝛼 𝑓 .

Given an objective function 𝑓 and a constraint specified by a

cost function 𝑐 and constraint bound 𝐵, we study the problem of

computing a (multi-) set of solutions 𝑃 = {𝑃1, . . . , 𝑃𝜇 } such that

𝑓 (𝑃𝑖 ) ≥ 𝑓𝑚𝑖𝑛 ∧ 𝑐 (𝑃𝑖 ) ≤ 𝐵 holds for 1 ≤ 𝑖 ≤ 𝜇. Here 𝑓𝑚𝑖𝑛 is a

threshold value which requires a minimum objective value for any

solution in 𝑃 . For the resulting set 𝑃 , we are aiming to have a high

diversity measured in terms of entropy. We formally introduce our

entropy-based diversity measure for a given set of solutions in

Section 5.

In the following, we introduce greedy sampling approaches that

are able to construct sets of solutions where all solutions have

guaranteed quality. We also point out the trade-off in terms of

guaranteed quality of the solutions and the number of solutions

that are meeting the guaranteed quality. Afterwards, we present

a simple evolutionary diversity optimisation approach that can

significantly increase the entropy of the solutions sets.

3 DIVERSE SETS FOR UNIFORM
CONSTRAINTS

Greedy approaches have been shown to obtain the best possible

worst-case performance guarantees for a wide range of constrained

monotone submodular problems [18, 26]. In the following, we show

how to adapt popular greedy algorithms in the area of submodular

optimisation such that they are able to construct diverse sets of high

quality solutions. We first consider the case of a uniform constraint,

i.e. we have 𝑐 (𝑋 ) = |𝑋 | ≤ 𝐵.

3.1 Diversifying Greedy Sampling
The diversifying greedy sampling (DGS) approach outlined in Algo-

rithm 1 starts with an empty set and always includes the item with

the largest marginal gain until 𝐵 −𝑚 elements have been inserted.

The margin𝑚 here determines the quality of the partial solution

𝑆 obtained in this way. After having obtained 𝑆 using the greedy

approach for bound 𝐵 −𝑚, a set of 𝜇 solutions {𝑃1, . . . , 𝑃𝜇 } is con-
structed. Each 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝜇, is constructed by adding𝑚 randomly

chosen elements from 𝑉 \ 𝑆 to 𝑆 .

Throughout this paper, we assume that 𝐵 and 𝑚 are positive

integers and that 𝑚 is small compared to 𝐵, i.e. 𝑚 = 𝑜 (𝐵) holds.
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It should be noted that small values of𝑚 are already sufficient to

construct large sets of diverse solutions if 𝑛 − 𝐵 is sufficiently large.

We now analyze DGSwith respect to the quality and the diversity

of the solution set it obtains. The following theorem shows that the

solutions constructed by DGS almost achieve the same worst-case

approximation guarantee as the classical greedy approach if𝑚 is

small compared to 𝐵. More precisely, the performance guarantee is

only by a factor of 1 − 𝑜 (1) smaller if𝑚 = 𝑜 (𝐵) holds.

Theorem 3.1. For a given monotone 𝛼 𝑓 -submodular function 𝑓

with a uniform constraint |𝑋 | ≤ 𝐵 and margin𝑚 ≤ 𝐵, DGS computes
a population 𝑃 = {𝑃1, . . . , 𝑃𝜇 }, where 𝑓 (𝑃𝑖 ) ≥ (1 − 𝑒−𝛼𝑓 · (1 −
𝛼 𝑓 /𝐵)−𝑚)) · 𝑓 (𝑂𝑃𝑇 ), 1 ≤ 𝑖 ≤ 𝜇. If𝑚 = 𝑜 (𝐵) then for each solution
𝑃𝑖 ,

𝑓 (𝑃𝑖 ) ≥
(
1 − 𝑒−𝛼𝑓 +𝑜 (1)

)
· 𝑓 (𝑂𝑃𝑇 )

holds.

Proof. We consider a solution produced by the greedy algo-

rithm which introduced 𝐵 −𝑚 elements. For the proof, we follow

the ideas for the classical greedy approach analysed in [18] and

take into account the submodularity ratio 𝛼 𝑓 and the fact that only

𝐵 −𝑚 elements can be introduced to obtain the solution 𝑆 .

For each set 𝑋 with |𝑋 | < 𝐵 −𝑚 and the element 𝑣∗ ∉ 𝑋 such

that 𝑓 (𝑋 ∪ {𝑣∗}) − 𝑓 (𝑋 ) is maximal, we have

𝑓 (𝑂𝑃𝑇 ) ≤ 𝑓 (𝑂𝑃𝑇 ∪ 𝑋 )

≤ 𝑓 (𝑋 ) + 1

𝛼 𝑓
·

∑
𝑣∈(𝑂𝑃𝑇 \𝑋 )

(𝑓 (𝑋 ∪ {𝑣}) − 𝑓 (𝑋 ))

≤ 𝑓 (𝑋 ) + (𝐵/𝛼 𝑓 ) · (𝑓 (𝑋 ∪ {𝑣∗}) − 𝑓 (𝑋 )) .

Here the first inequality follows from monotonicity, the second

one holds as 𝑓 is 𝛼 𝑓 -submodular, and the third uses that 𝑣∗ is an
element with the largest marginal gain with respect to 𝑓 and 𝑋 and

that |𝑂𝑃𝑇 \ 𝑋 | ≤ 𝐵 holds.

This implies that in each step an element 𝑣∗ is added to the

current partial solution 𝑆 , the function value increases by

𝑓 (𝑆 ∪ {𝑣∗}) − 𝑓 (𝑆) ≥
𝛼 𝑓

𝐵
· (𝑓 (𝑂𝑃𝑇 ) − 𝑓 (𝑆)).

Using induction on the number of elements 𝑖 as done in [18] and

taking into account 𝛼 𝑓 , we obtain a partial solution 𝑆𝑖 with

𝑓 (𝑆𝑖 ) ≥ (1 − (1 − 𝛼 𝑓 /𝐵)𝑖 ) · 𝑓 (𝑂𝑃𝑇 )

After having inserted 𝐵 −𝑚 elements greedily to obtain 𝑆 , we

have

𝑓 (𝑆) ≥ (1 − (1 − 𝛼 𝑓 /𝐵)𝐵−𝑚) · 𝑓 (𝑂𝑃𝑇 )

= (1 − (1 − 𝛼 𝑓 /𝐵)𝐵 · (1 − 𝛼 𝑓 /𝐵)−𝑚) · 𝑓 (𝑂𝑃𝑇 )
≥ (1 − (𝑒−𝛼𝑓 · (1 − 𝛼 𝑓 /𝐵)−𝑚)) · 𝑓 (𝑂𝑃𝑇 ) .

Assuming𝑚 = 𝑜 (𝐵) and using 𝛼 𝑓 ∈ [0, 1], we get
𝑓 (𝑆) ≥ (1 − 𝑒−𝛼𝑓 · (1 − 1/𝐵)−𝑚)) · 𝑓 (𝑂𝑃𝑇 )

≥
(
1 − 𝑒−𝛼𝑓 ·

(
(1 − 1/𝐵)𝐵

)−𝑚/𝐵 )
· 𝑓 (𝑂𝑃𝑇 )

≥
(
1 − 𝑒−𝛼𝑓 · 𝑒𝑚/𝐵

)
· 𝑓 (𝑂𝑃𝑇 )

≥
(
1 − 𝑒−𝛼𝑓 +𝑜 (1)

)
· 𝑓 (𝑂𝑃𝑇 ).

Each solution 𝑃𝑖 is obtained from 𝑆 by adding𝑚 additional ele-

ments. As 𝑓 is monotone, we have 𝑓 (𝑃𝑖 ) ≥ 𝑓 (𝑆) which completes

the proof. □

The margin𝑚 allows to select𝑚 additional elements not con-

tained in 𝑆 to obtain solutions meeting the quality criteria. This

leads to a large number of solutions if the difference 𝑛 − 𝐵 is suffi-

ciently large.

Theorem 3.2. There are at least
∑𝑚

𝑗=0

(𝑛−𝐵+𝑚
𝑗

)
feasible solutions

𝑋 with 𝑓 (𝑋 ) ≥ (1−𝑒−𝛼𝑓 · (1−𝛼 𝑓 /𝐵)−𝑚)) ·𝑓 (𝑂𝑃𝑇 ). Each 𝑃𝑖 produced
by DGS is sampled from a set of

(𝑛−𝐵+𝑚
𝑚

)
such solutions.

Proof. As 𝐵 −𝑚 elements have only been introduced to obtain

𝑆 ,𝑚 additional elements among the 𝑛 − 𝐵 +𝑚 elements not chosen

by the greedy algorithm can be introduced. Adding every possible

subset consisting of 𝑗 , 0 ≤ 𝑗 ≤ 𝑚, so far unchosen elements to the

𝐵 −𝑚 elements of 𝑆 gives a set of

𝑚∑
𝑗=0

(
𝑛 − 𝐵 +𝑚

𝑗

)
solutions. Each 𝑃𝑖 selects𝑚 of such elements which implies that

each 𝑃𝑖 is sampled from a set of

(𝑛−𝐵+𝑚
𝑚

)
different solutions. □

Based on the previous proof, we have established that the number

of different solutions with exactly 𝐵 elements that meet the quality

criterion of Theorem 3.1 is at least

(𝑛−𝐵+𝑚
𝑚

)
. We will concentrate

on such solutions with exactly 𝐵 elements as we are dealing with

monotone functions where the addition of elements does not reduce

the function value. In fact, adding elements without violating the

constraint often leads to a solution of higher quality in practice.

4 DIVERSE SETS FOR KNAPSACK
CONSTRAINTS

Wenow consider the case of a knapsack constraint. Given a function

𝑐 : 𝑉 → R≥0 assigning non-negative costs to the elements, the cost

of a set 𝑋 is given as 𝑐 (𝑋 ) = ∑
𝑣∈𝑋 𝑐 (𝑣) and we require 𝑐 (𝑋 ) ≤ 𝐵

for a feasible set 𝑋 .

4.1 Generalized Diversifying Greedy Sampling
The generalized diversifying greedy sampling (GDGS) approach

outlined in Algorithm 2 also works with a margin𝑚 which reduces

the threshold for introducing elements in the greedy steps from 𝐵

to 𝐵 −𝑚. As in the classical generalized greedy algorithm [26], in

each step the element with the largest function gain to cost increase

ratio that does not violate the cost constraint is added. The process

is iterated until no further element can be added without violating

the constraint bound 𝐵 −𝑚 resulting in a set 𝑆 . The result of the

generalized greedy part is a set𝑇 which is equal to 𝑆 or the set with
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Algorithm 1: Diversifying Greedy Sampling (DGS)

input :Set of elements 𝑉 , function 𝑓 , budget constraint 𝐵,

margin𝑚, number of solutions 𝜇.

1 𝑆 ← ∅;
2 𝑉 ′ ← 𝑉 ;

3 while ( |𝑆 | + 1 ≤ 𝐵 −𝑚) ∧ (𝑉 ′ ≠ ∅) do
4 𝑣∗ ← argmax𝑣∈𝑉 ′ (𝑓 (𝑆 ∪ {𝑣}) − 𝑓 (𝑆));
5 𝑆 ← 𝑆 ∪ {𝑣∗};
6 𝑉 ′ ← 𝑉 ′ \ {𝑣∗};
7 for 𝑖 = 1, . . . , 𝜇 do
8 𝑃𝑖 ← 𝑆 ;

9 𝑉 ′ ← 𝑉 \ 𝑆 ;
10 while ( |𝑃𝑖 | + 1 ≤ 𝐵) ∧ (𝑉 ′ ≠ ∅) do
11 Choose 𝑣∗ ∈ 𝑉 ′ uniformly at random;

12 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑣∗};
13 𝑉 ′ ← 𝑉 ′ \ {𝑣∗};

14 return 𝑃 = {𝑃1, . . . , 𝑃𝜇 };

the element 𝑦 having the largest function value. Among these two

options the set with the largest function value is chosen as 𝑇 . In

the sampling part a set of 𝜇 solutions {𝑃1, . . . , 𝑃𝜇 } is constructed
by adding randomly chosen elements to 𝑇 . Each 𝑃𝑖 is obtained by

starting with 𝑇 , choosing an element 𝑣∗ from the set of remaining

elements 𝑉 ′ uniformly at random, and adding 𝑣∗ to 𝑃𝑖 if the result-
ing set does not violate the constraint. The process is iterated until

no further elements can be added to 𝑃𝑖 .

The following theorem shows that each solution 𝑃𝑖 obtained

in this way has an approximation guarantee that is only by a mi-

nor term smaller than the one of the classical generalized greedy

approach working with a budget of 𝐵.

Theorem 4.1. Consider a monotone 𝛼 𝑓 -submodular function 𝑓

with a knapsack constraint 𝑐 (𝑋 ) ≤ 𝐵 and margin𝑚 ≤ 𝐵. If𝑚 = 𝑜 (𝐵),
then for each solution 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝜇, constructed by GDGS, we have

𝑓 (𝑃𝑖 ) ≥ (𝛼 𝑓 /2) ·
(
1 − 𝑒−𝛼𝑓 +𝑜 (1)

)
· 𝑓 (𝑂𝑃𝑇 )

Proof. We run the generalized greedy algorithm for budget

𝐵 −𝑚. Following [23], the gain in terms of 𝑓 when inserting 𝑣∗ is
at least

𝑓 (𝑆 ∪ {𝑣∗}) − 𝑓 (𝑆) ≥ 𝛼 𝑓 ·
𝑐 (𝑆 ∪ {𝑣∗}) − 𝑐 (𝑆)

𝐵
· (𝑓 (𝑂𝑃𝑇 ) − 𝑓 (𝑆)) .

GDGS obtains a solution 𝑆 with |𝑆 | = 𝐿. Let 𝑧 ∉ 𝑆 be the first

element that has not been added after having produced set 𝑆 . We

have 𝑐 (𝑆) + 𝑐 ({𝑧}) > 𝐵 −𝑚 and 𝑓 (𝑦) ≥ 𝑓 (𝑧). Let 𝑠𝑖 , 1 ≤ 𝑖 ≤ 𝐿, be

the ith element added to 𝑆 and 𝑠𝐿+1 = 𝑧. Using induction similar as

in [3, 23], we get

Algorithm 2: Generalized Diversifying Greedy Sampling

(GDGS)

input :Set of elements 𝑉 , functions 𝑓 and 𝑐 , knapsack

constraint 𝐵, margin𝑚, number of solutions 𝜇.

1 𝑆 ← ∅;
2 𝑉 ′ ← 𝑉 ;

3 while 𝑉 ′ ≠ ∅ do
4 𝑣∗ ← argmax𝑣∈𝑉 ′

𝑓 (𝑆∪{𝑣 })−𝑓 (𝑆)
𝑐 (𝑆∪{𝑣 })−𝑐 (𝑆) ;

5 if 𝑐 (𝑆 ∪ {𝑣∗}) ≤ 𝐵 −𝑚 then
6 𝑆 ← 𝑆 ∪ {𝑣∗};
7 𝑉 ′ ← 𝑉 ′ \ {𝑣∗};
8 𝑦 ∈ argmax𝑣∈𝑉 :𝑐 ( {𝑣 }) ≤𝐵 𝑓 ({𝑣})
9 𝑇 ← argmax𝑌 ∈{𝑆,{𝑦 }} 𝑓 (𝑌 );

10 for 𝑖 = 1, . . . , 𝜇 do
11 𝑃𝑖 ← 𝑇 ;

12 𝑉 ′ ← 𝑉 \𝑇 ;
13 while 𝑉 ′ ≠ ∅ do
14 Choose 𝑣∗ ∈ 𝑉 ′ uniformly at random;

15 if 𝑐 (𝑃𝑖 ∪ {𝑣∗}) ≤ 𝐵 then
16 𝑃𝑖 ← 𝑃𝑖 ∪ {𝑣∗};
17 𝑉 ′ ← 𝑉 ′ \ {𝑣∗};

18 return 𝑃 = {𝑃1, . . . , 𝑃𝜇 };

𝑓 (𝑆 ∪ {𝑦}) ≥
1 −

𝐿+1∏
𝑗=1

(
1 − 𝛼 𝑓

𝑐 (𝑠𝑖 )
𝐵

) · 𝑓 (𝑂𝑃𝑇 )
≥

1 −
𝐿+1∏
𝑗=1

(
1 − 𝛼 𝑓

𝐵 −𝑚
(𝐿 + 1)𝐵

) · 𝑓 (𝑂𝑃𝑇 )
≥

[
1 −

(
1 − 𝛼 𝑓

1

𝐿 + 1 + 𝛼 𝑓
𝑚

(𝐿 + 1) · 𝐵

)𝐿+1]
· 𝑓 (𝑂𝑃𝑇 )

Assuming𝑚 = 𝑜 (𝐵) and using 𝛼 𝑓 ∈ [0, 1], we have

𝑓 (𝑆 ∪ {𝑦}) ≥
[
1 −

(
1 − 𝛼 𝑓

1

𝐿 + 1 +
𝑚

(𝐿 + 1) · 𝐵

)𝐿+1]
· 𝑓 (𝑂𝑃𝑇 )

≥
[
1 −

(
1 −

𝛼 𝑓 − 𝑜 (1)
𝐿 + 1

)𝐿+1]
· 𝑓 (𝑂𝑃𝑇 )

=

(
1 − 𝑒−𝛼𝑓 +𝑜 (1)

)
· 𝑓 (𝑂𝑃𝑇 )

Using that 𝑓 is 𝛼 𝑓 -submodular, we have

𝑓 (𝑆) + 𝑓 ({𝑦}) ≥ 𝑓 (𝑆) + 𝛼 𝑓 · 𝑓 ({𝑦})
≥ 𝛼 𝑓 · 𝑓 (𝑆 ∪ {𝑦})

≥ 𝛼 𝑓 ·
(
1 − 𝑒−𝛼𝑓 +𝑜 (1)

)
· 𝑓 (𝑂𝑃𝑇 ).

We have 𝑓 (𝑇 ) = max{𝑓 (𝑆), 𝑓 (𝑦)} and hence

𝑓 (𝑇 ) ≥ (𝛼 𝑓 /2) · (1 − 𝑒−𝛼𝑓 +𝑜 (1) ) · 𝑓 (𝑂𝑃𝑇 ).



Diversifying Greedy Sampling and Evolutionary Diversity Optimisation for Constrained Monotone Submodular Functions GECCO ’21, July 10–14, 2021, Lille, France

As 𝑓 is monotone and each 𝑃𝑖 is obtained from 𝑇 by adding an

additional set of elements, we have for each 𝑖 , 1 ≤ 𝑖 ≤ 𝜇,

𝑓 (𝑃𝑖 ) ≥ 𝑓 (𝑇 ) ≥ (𝛼 𝑓 /2) · (1 − 𝑒−𝛼𝑓 +𝑜 (1) ) · 𝑓 (𝑂𝑃𝑇 )

which completes the proof. □

We now investigate the number of different solutions meeting

the quality threshold determined by 𝐵 −𝑚. Let 𝑐min = min𝑣∈𝑉 𝑐 (𝑣)
and 𝑐max = max𝑣∈𝑉 𝑐 (𝑣) be the minimal and maximal cost of the

elements in 𝑉 , respectively.

Theorem 4.2. There are at least
⌊𝑚/𝑐max ⌋∑

𝑖=1

(
𝑛 − ⌊(𝐵 −𝑚)/𝑐min⌋

𝑖

)
distinct feasible solutions 𝑋 with 𝑓 (𝑋 ) ≥ (𝛼 𝑓 /2) · (1 − 𝑒−𝛼𝑓 +𝑜 (1) ) ·
𝑓 (𝑂𝑃𝑇 ).

Proof. Obtaining the set 𝑇 of costs at most 𝐵 −𝑚, we can pick

at least ⌊𝑚/𝑐max⌋ additional elements. For the number of elements

in the set 𝑇 produced by GDGS, we have |𝑇 | ≤ ⌊(𝐵 −𝑚)/𝑐min⌋.
This implies that there are at least

⌊𝑚/𝑐max ⌋∑
𝑖=1

(
𝑛 − ⌊(𝐵 −𝑚)/𝑐min⌋

𝑖

)
different sets of solutions with the desired approximation quality.

□

Note, that in order to obtain 𝜇 of these solutions, GDGS creates 𝜇

solutions by randomly selecting unchosen elements until no further

element can be included without violating the constraint bound 𝐵.

This implies that in most situations, solutions with a cost close to

the constraint bound 𝐵 are generated.

5 ENTROPY-BASED EVOLUTIONARY
DIVERSITY OPTIMISATION

We now introduce a simple EDO approach to create high quality

diverse sets of solutions. In order to maximise diversity of our set of

𝜇 solutions we introduce a threshold 𝑓𝑚𝑖𝑛 and aim to produce a set

of solutions 𝑃 maximising diversity under the condition that for all

𝑥 ∈ 𝑃 , 𝑓 (𝑥) ≥ 𝑓𝑚𝑖𝑛 holds. The value of 𝑓𝑚𝑖𝑛 used in our setting is

determined by the introduced greedy sampling approaches and the

margin𝑚 used and therefore provides a worst-case approximation

guarantee for all solutions in the obtained set 𝑃 .

5.1 Entropy-Based Diversity Measure
Let 𝑉 = {𝑣1, . . . , 𝑣𝑛} be the given set of input elements. For a given

population 𝑃 of size 𝜇, we denote by

𝑝 (𝑣𝑖 ) =
|{𝑃 𝑗 ∈ 𝑃 | 𝑣𝑖 ∈ 𝑃 𝑗 }|

𝜇

the fraction of solutions in 𝑃 that contain element 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛. We

define the entropy of a given population 𝑃 as

𝐻 (𝑃) = −
𝑛∑
𝑖=1

𝑝 (𝑣𝑖 ) log2 𝑝 (𝑣𝑖 ) .

Our goal is to maximise the entropy under the condition that all

solutions in 𝑃 are feasible and meet a given quality criterion. We

use log(𝑥) instead of log
2
(𝑥) in the following to simplify notations.

Note, that elements not present in the population or elements

present in all solutions have a contribution of 0 to 𝐻 (𝑃). The func-
tion −𝑥 log𝑥 is concave in [0, 1] and monotonically increasing in

[0, 1/𝑒]. This implies that increasing the fraction of solutions in

𝑃 until a fraction of 1/𝑒 is obtained is rewarded by the entropy

diversity measure. In addition −𝑥 log𝑥 is monotonically decreasing

in [1/𝑒, 1] which means that increasing fractions to larger than 1/𝑒
reduces diversity with respect to the considered entropy measure.

5.2 Limitations of Diversifying Greedy
Sampling

Before introducing the evolutionary diversity optimisation approach,

we point out some limitations of diversifying greedy sampling that

show in which way diversity may be improved in common situa-

tions while still maintaining high quality solutions. We consider

DGS which selects for each solution 𝑃𝑖 the same set of elements 𝑆

with |𝑆 | = 𝐵−𝑚 and adds exactly𝑚 additional elements afterwards.

This implies that there is no contribution of the elements in 𝑆 to the

entropy score and we can upper bound the entropy of a population

as follows. In the following, we assume that 𝜇 is large such that each

element can be captured in up to a (1/𝑒)-fraction of the solutions

in the population.

Theorem 5.1. Let 𝑃 be a population produced by DGS. Then we
have

𝐻 (𝑃) ≤ −𝑚 log

( 𝑚

𝑛 − 𝐵 +𝑚

)
≤ −𝑛 − 𝐵 +𝑚

𝑒
· log(1/𝑒).

Proof. The entropy of a population is maximal if the number

of occurrences of all elements in 𝑃 differs by at most 1 and the

fraction of occurrences of all elements is 1/𝑒 . This is due to the

fact that the function 𝑓 (𝑥) = −𝑥 log𝑥 is monotonically increasing

in [0, 1/𝑒] and monotonically decreasing in [1/𝑒, 1] and that the

second derivative 𝑓 ′′(𝑥) = − 1

ln(2) ·𝑥 is negative in [0, 1]. W.l.o.g.

we assume that the first 𝐵 −𝑚 elements are contained in each of

the 𝜇 solutions. This means that these elements do not contribute

to the entropy measure. The maximum entropy of a population 𝑃

obtained by DGS is

𝐻 (𝑃) = −
𝑛∑
𝑖=1

𝑝 (𝑣𝑖 ) log 𝑝 (𝑣𝑖 )

= −
𝑛∑

𝑖=𝐵−𝑚+1
𝑝 (𝑣𝑖 ) log 𝑝 (𝑣𝑖 )

≤ −
𝑛∑

𝑖=𝐵−𝑚+1

𝑚

𝑛 − 𝐵 +𝑚 log

( 𝑚

𝑛 − 𝐵 +𝑚

)
= −(𝑛 − 𝐵 +𝑚) 𝑚

𝑛 − 𝐵 +𝑚 log

( 𝑚

𝑛 − 𝐵 +𝑚

)
= −𝑚 · log

( 𝑚

𝑛 − 𝐵 +𝑚

)
≤ − (𝑛 − 𝐵 +𝑚) · 1

𝑒
· log(1/𝑒)

□
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To illustrate the benefit of using the 𝐵 − 𝑚 elements of 𝑆 to

improve diversity, we consider the simple example of the function

𝑂𝑛𝑒𝑀𝑎𝑥 (𝑋 ) = |𝑋 | which is the simplest non-trivial submodular

function.

Assume that 𝐵/𝑛 is an integer. For OneMax, distributing 𝜇𝐵

elements equally among the 𝑛 positions would give a population

𝑃∗ with 𝑝 (𝑣𝑖 ) = 𝐵/𝑛, 1 ≤ 𝑖 ≤ 𝑛, and we have

𝐻 (𝑃∗) = −
𝑛∑
𝑖=1

𝑝 (𝑣𝑖 ) log𝑝 (𝑣𝑖 )

= −
𝑛∑
𝑖=1

(𝐵/𝑛) log(𝐵/𝑛)

= −𝐵 log(𝐵/𝑛)
Assuming 𝐵 = ⌈𝑛/𝑒⌉ (or 𝐵 = ⌊𝑛/𝑒⌋ depending on rounding to

the next integer), then 𝐻 (𝑃∗) is the maximal among all possible

populations if each item appears in the population ⌊𝜇/𝑒⌋ or ⌈𝜇/𝑒⌉
times. In this case, the maximal entropy value that can be obtained

is approximately 𝐻 (𝑃) = −𝑛𝑒 · log(1/𝑒).

5.3 Evolutionary Diversity Optimisation
Our aim is to further improve the sets of solutions created by the

diversifying greedy sampling approaches using evolutionary di-

versity optimisation. Given the set of solutions 𝑃 = {𝑃1, . . . , 𝑃𝜇 }
produced by a diversifying greedy sampling approach, we set a

quality threshold

𝑓𝑚𝑖𝑛 = min

𝑖=1,...,𝜇
𝑓 (𝑃𝑖 )

and improve diversity of the set 𝑃 under the condition that all

solutions in 𝑃 are feasible and have function value at least 𝑓𝑚𝑖𝑛 . Note

that 𝑓𝑚𝑖𝑛 imposes a guaranteed quality dependent on the margin

𝑚 used in (generalized) diversifying greedy sampling approach as

pointed out in Section 3 and 4.

We use the algorithm DIVEA shown in Algorithm 3 to com-

pute a high quality diverse population where each individual 𝐼 has

to meet the given quality criterion 𝑓𝑚𝑖𝑛 and does not violate the

budget 𝐵. An individual 𝐼 ⊆ 𝑉 is a set of elements of 𝑉 . At first,

the initial population 𝑃 is generated with 𝜇 individuals created by

the diversifying greedy sampling approaches. In each iteration of

DIVEA exactly one offspring 𝐼 ′ is produced by mutation. We use a

mutation operator matching standard bit mutations for bit-strings.

Given an individual 𝐼 , we produce a new individual 𝐼 ′ by copy-

ing 𝐼 and changing the status of each 𝑣𝑖 ∈ 𝑉 for being included

or excluded in 𝐼 ′ with probably 1/𝑛. If the offspring 𝐼 ′ meets the

quality threshold 𝑓𝑚𝑖𝑛 and the budget constraint, then 𝐼 ′ is added
to the population. If 𝐼 ′ is added to the population, one individual is

selected for removal ensuring that the population size after each

iteration is 𝜇. An individual 𝐼 ∈ 𝑃 is removed such that 𝐻 (𝑃 \ {𝐼 })
is maximal among all individuals 𝐽 ∈ 𝑃 . This implies that the result-

ing population 𝑃 has the highest possible entropy of all sets of 𝜇

individuals available in iteration 𝑡 . The algorithm iterates for 𝑡𝑚𝑎𝑥

iterations and outputs the final population.

It should be noted that DIVEA is a very simple baseline algorithm

and the goal here is to show how evolutionary algorithms can

be used to further improve diversity of the sets obtained by the

diversifying greedy sampling approaches.

Algorithm 3: Diversifying EA (DIVEA)

input : Initial population 𝑃 = {𝑃1, . . . , 𝑃𝜇 }, threshold
𝑓𝑚𝑖𝑛 = min𝑖=1,...,𝜇 𝑓 (𝑃𝑖 ), maximum number of

iterations 𝑡𝑚𝑎𝑥 .

1 𝑡 ← 0;

2 while 𝑡 ≤ 𝑡𝑚𝑎𝑥 do
3 𝑡 ← 𝑡 + 1;
4 Choose 𝐼 ∈ 𝑃 uniformly at random and produce an

offspring 𝐼 ′ of 𝐼 by mutation;

5 if (𝑓 (𝐼 ′) ≥ 𝑓𝑚𝑖𝑛) ∧ (𝑐 (𝐼 ′) ≤ 𝐵) then
6 𝑃 ← 𝑃 ∪ {𝐼 ′};
7 Remove exactly one individual 𝐼 , with

𝐼 = argmax𝐽 ∈𝑃 𝐻 (𝑃 \ {𝐽 }) from 𝑃 ;

8 return 𝑃 = {𝑃1, . . . , 𝑃𝜇 };

6 EXPERIMENTAL INVESTIGATIONS
We examine the introduced algorithms on the submodular influence

maximisation problem [15, 23] and the maximum coverage prob-

lem [4, 12] with uniform and knapsack constraints. We consider

instances of these problems together with a wide range of parame-

ters effecting the diversity entropy score that is achieved. Crucial

parameters are the constraint bound 𝐵 which together with the

input size𝑛 and the margin𝑚 determines the number of guaranteed

high quality solutions. Themargin𝑚 used in the diversifying greedy

sampling approach explicitly determines the quality threshold of

the diverse set of solutions and the population size 𝜇 determines

the number of solutions that are contained in the diverse set. As

pointed out in Section 3 and 4, an increasing value of𝑚 reduces

quality but enables higher diversity. Furthermore, a larger value of

𝜇 allows to increase the overall entropy diversity score. We discuss

the different experimental results for the influence maximisation

and maximum coverage problem with a focus on these parameters.

6.1 The Influence Maximisation Problem
The influence maximisation problem (IM) aims to identify a set

of the most influential users in a social network. IM intents to

maximise the spread of influence through a social network i.e. a

graph of social interactions within a group of users [11].

The social network is modeled as a directed graph 𝐺 = (𝑉 , 𝐸)
where each node represents a user, and each edge (𝑢, 𝑣) ∈ 𝐸 has

been assigned an edge probability 𝑝𝑢,𝑣 which indicates that user 𝑢

influences user 𝑣 . The aim of the influence maximisation problem

is to find a subset 𝑋 ⊆ 𝑉 such that the number of activated nodes

of 𝑋 is maximised.

6.2 The Maximum Coverage Problem
The maximum coverage problem [4, 12] is a classical NP-hard sub-

modular optimisation problem and arises frequently in a variety of

settings. Given a set𝑈 of elements, a collection𝑉 = {𝑉1,𝑉2, . . . ,𝑉𝑛}
of subsets of 𝑈 , a cost function 𝑐 : 2𝑉 → R≥0 and a budget 𝐵, the

goal is to find a collection of subsets 𝑋 ∗ ⊆ 𝑉 such that the num-

ber of covered elements is maximised subject to meeting the cost
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Table 1: Results for the influence maximisation problem
with uniform constraints for 𝐵 = 10.

𝐵 𝑚 𝜇
Threshold (1) DGS Entropy (2) DIVEA Entropy (3)

mean std mean std stat mean std stat

10

2 5 43.13 0.1826 4.6039 0.1221 3
(−) 23.2193 1.45E-14 2

(+)

2 10 40.07 1.6758 6.5572 0.1456 3
(−) 33.1793 0.2191 2

(+)

10

2 15 39.46 1.2249 7.7160 0.1353 3
(−) 39.0422 0.1074 2

(+)

2 20 39.39 1.3378 8.4572 0.1332 3
(−) 43.1293 0.1826 2

(+)

10

5 5 40.37 1.8864 11.4096 0.2729 3
(−) 23.2193 1.45E-14 2

(+)

5 10 39.22 1.4137 16.2096 0.2828 3
(−) 33.2193 1.45E-14 2

(+)

10

5 15 38.80 1.2474 18.7255 0.3123 3
(−) 39.0645 0.0243 2

(+)

5 20 38.76 1.0637 20.6854 0.2107 3
(−) 43.1780 0.0948 2

(+)

10

8 5 37.81 1.5747 18.0954 0.5594 3
(−) 23.2193 0.0000 2

(+)

8 10 37.52 1.6507 25.2803 0.6395 3
(−) 33.2193 7.49E-15 2

(+)

10

8 15 37.47 1.5072 29.4682 0.4243 3
(−) 39.0689 7.49E-15 2

(+)

8 20 37.27 0.8154 32.2052 0.3433 3
(−) 43.2193 0.0000 2

(+)

constraint, i.e.

𝑋 ∗ = argmax𝑋 ⊆𝑉
{
| ∪𝑉𝑖 ∈𝑋 𝑉𝑖 | | 𝑐 (𝑋 ) ≤ 𝐵

}
.

6.3 Experimental Setting
For our experiments, we use the real-world graph frb30-15-01 that

contains 450 nodes and 17 827 edges from [22]. In the case of the

maximum coverage problem, the set𝑈 consists of the vertices of the

graph and for each vertex 𝑣𝑖 , we construct a set𝑉𝑖 that includes the

vertex itself and its adjacent vertices with a higher node number.

We consider uniform and knapsack constraints. In the uniform

setting the cost of a set of chosen nodes 𝑋 for the maximum influ-

ence problem is 𝑐 (𝑋 ) = |𝑋 |. In the uniform setting for maximum

coverage problem, the cost of a solution 𝑋 is given by the number

of chosen sets, i.e. we have 𝑐 (𝑋 ) = |{𝑉𝑖 | 𝑉𝑖 ∈ 𝑋 }|. In the case of

knapsack constraints, the cost of a node 𝑣 in the influence maximi-

sation problem is given by 𝑐 (𝑣) = deg(𝑣) + 1, where deg(𝑣) denotes
the outdegree of 𝑣 in 𝐺 . The cost of a given set of nodes 𝑋 is given

as 𝑐 (𝑋 ) = ∑
𝑣∈𝑋 𝑐 (𝑣). For the maximum coverage problem, the cost

of a set 𝑉𝑖 is 𝑐 (𝑉𝑖 ) = |𝑉𝑖 | and the cost of a solution 𝑋 is given as

𝑐 (𝑋 ) = ∑
𝑉𝑖 ∈𝑋 |𝑉𝑖 |.

6.4 Diverse Sets for Uniform Constraints
We consider the results for the diversifying greedy sampling and di-

versifying evolutionary algorithm with the uniform constraint. The

experimental results of the influence maximisation problem and

maximum coverage problem for DGS and DIVEA are shown in Ta-

ble 1 and Table 2, respectively. For the experimental investigations,

we consider all combinations of𝑚 = 2, 5, 8 and 𝜇 = 5, 10, 15, 20 for

𝐵 = 10, 15. For each instance, we run each algorithm 30 times for

10𝑚 iterations and record the final population.

We compare the results in terms of the entropy values obtained

by the DGS and DIVEA at each 𝑚 and 𝜇 for budgets 𝐵 = 10, 15.

In order to test the statistical significance of the results we use

the Kruskal-Wallis test with 95% confidence in order to measure

the statistical validity of our results [1]. 𝑌 (+) is equivalent to the

statement that the algorithm in the column outperformed algorithm

Table 2: Results for the maximum coverage problem with
uniform constraints for 𝐵 = 10, 15.

𝐵 𝑚 𝜇
Threshold (1) GDGS Entropy (2) DIVEA Entropy (3)

mean std mean std stat mean std stat

10

2 5 429.70 1.2360 4.6439 1.80E-15 3
(−) 18.0233 1.9351 2

(+)

2 10 428.60 0.9322 6.5972 0.1137
3(−) 23.2874 1.4800 2

(+)

10

2 15 427.90 0.9948 7.6921 0.1320 3
(−) 25.4377 1.5628 2

(+)

2 20 427.50 1.0009 8.4959 0.9010 3
(−) 26.6811 1.8844 2

(+)

10

5 5 429.53 1.4320 11.3263 0.2959 3
(−) 23.2059 0.0731 2

(+)

5 10 428.83 1.0530 16.0237 0.3192 3
(−) 33.1276 0.1868 2

(+)

10

5 15 427.80 1.0635 18.7877 0.3068 3
(−) 38.6461 0.3739 2

(+)

5 20 427.73 0.8683 20.5862 0.2211 3
(−) 42.0368 0.5832 2

(+)

10

8 5 383.83 8.2716 18.1037 0.4311 3
(−) 23.2193 1.45E-14 2

(+)

8 10 382.77 6.5003 25.2569 0.5274 3
(−) 33.2198 1.45E-14 2

(+)

10

8 15 378.97 5.4818 29.3765 0.5114 3
(−) 39.0689 2.17E-14 2

(+)

8 20 374.90 7.4941 32.1019 0.4154 3
(−) 43.2193 0.000 2

(+)

15

2 5 449.00 0.0000 4.6305 0.0731 3
(−) 27.6151 2.2429 2

(+)

2 10 449.00 0.0000 6.5639 0.5704 3
(−) 31.0779 2.1572 2

(+)

15

2 15 449.00 0.0000 7.6565 0.1479 3
(−) 33.0764 1.7469 2

(+)

2 20 449.00 0.0000 8.5205 0.0917 3
(−) 33.7519 1.8101 2

(+)

15

5 5 444.17 1.1167 11.3563 0.3401 3
(−) 34.6772 0.3627 2

(+)

5 10 443.80 1.0954 16.0621 0.2732 3
(−) 47.8240 1.3957 2

(+)

15

5 15 443.47 1.0742 18.6366 0.2732 3
(−) 53.7846 1.9886 2

(+)

5 20 442.90 0.9595 20.5957 0.2840 3
(−) 57.4155 1.9886 2

(+)

15

8 5 435.77 1.9061 18.0154 0.4014 3
(−) 34.8289 1.45E-14 2

(+)

8 10 434.37 2.2047 25.3553 0.4093 3
(−) 49.8223 0.0365 2

(+)

15

8 15 434.23 1.9420 29.2837 0.4798 3
(−) 58.4817 0.1664 2

(+)

8 20 434.17 1.4162 32.0748 0.4107 3
(−) 64.0082 0.3968 2

(+)

𝑌 (see numbers behind algorithm names in the top rows of the

tables). 𝑌 (−) is equivalent to the statement that 𝑌 outperformed

the algorithm given in the column.

The results in the Table 1 show that the DIVEA for the influence

maximisation problem significantly improve the diversity compar-

ing to the DGS approach for 𝐵 = 10. We see a similar result in

terms of threshold values where DIVEA is able to attain the quality

level achieved by DGA and additionally to produce significantly

higher entropy values than DGS for all of the cases. In particular,

the DIVEA creates higher entropy values in comparison to the

results produced by DSG for the smallest margin𝑚 = 2. Note that

for estimating the influence spread, we simulate the information

diffusion process among the users 100 times independently.

Table 2 shows that DIVEA obtains higher entropy values than

the DGS among all considered combinations of𝑚 and 𝜇. It should

be noted that higher entropy values 𝐻 (𝑃) indicate a higher diver-
sification of the population. In the case of a higher margin𝑚, e.g.

𝑚 = 8, DIVEA improve the diversity consistently. Furthermore,

Table 2 includes threshold values obtained by the DGS for all the

combinations of 𝑚 and 𝜇. We observe that the threshold values

decrease with increasing size of the margin and number of individ-

uals in the population. The results suggest that the DGS algorithm

is able to create diverse solutions and simultaneously maintain a
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Table 3: Results for the influence maximisation problem
with knapsack constraints for 𝐵 = 100.

𝐵 𝑚 𝜇
Threshold (1) GDGS Entropy (2) DIVEA Entropy (3)

mean std mean std stat mean std stat

100

10 5 48.34 3.0483 2.3422 0.4522 3
(−) 14.7342 2.4239 2

(+)

10 10 47.57 3.2168 2.9609 0.4285 3
(−) 16.9616 2.5704 2

(+)

100

10 15 47.54 2.5498 3.4633 0.5369 3
(−) 17.1217 2.0946 2

(+)

10 20 47.50 2.7268 3.4882 0.4566 3
(−) 17.7975 2.2266 2

(+)

100

20 5 46.04 5.0085 3.2619 0.4084 3
(−) 15.7603 2.4532 2

(+)

20 10 45.70 3.3142 4.6998 0.4005 3
(−) 18.5986 2.4380 2

(+)

100

20 15 45.61 2.1911 5.4380 0.5318 3
(−) 19.4041 1.4929 2

(+)

20 20 45.45 2.5654 5.7699 0.4936 3
(−) 20.0244 1.5025 2

(+)

100

30 5 45.88 1.6549 4.1523 0.5008 3
(−) 16.1894 2.1960 2

(+)

30 10 44.03 3.9920 6.1409 0.6590 3
(−) 19.4785 1.8216 2

(+)

100

30 15 41.62 3.1492 7.0700 0.3484 3
(−) 21.4490 2.0305 2

(+)

30 20 40.17 1.7436 7.1638 0.3493 3
(−) 22.1779 1.1061 2

(+)

similar quality. Predominantly, DIVEA is able to provide the approx-

imation quality achieved by the greedy approaches and to achieve

significantly higher entropy values than DGS for all of the cases.

6.5 Diverse Sets for Knapsack Constraints
We now consider the generalized diversifying greedy sampling

and diversifying evolutionary algorithm for the setting where the

weights depend on the degree of the node of the graph. We con-

sider budgets 𝐵 = 100 and margins𝑚 = 10, 20, 30. The sizes of the

populations is the same as for the uniform constraints. Table 3 and

Table 4 include threshold and entropy values obtained by the GDGS

and the DIVEA for the combination of𝑚 and 𝜇 for the influence

maximisation problem and maximum coverage problem. For the

setting, where 𝐵 elements can be used, the obtained threshold value

for the GDGS and 𝐵 = 100, 𝜇 = 5 and𝑚 = 10, 20, 30 is 48.34, 46.04

and 45.88 for the influence maximisation problem, respectively. Ad-

ditionally, the threshold value for the GDGS and 𝐵 = 100, 𝜇 = 5 and

𝑚 = 10, 20, 30 is 406.30, 398.53 and 388.57 for the maximum cover-

age problem. Furthermore, we compare the results in terms of the

entropy values obtained by the GDGS and the DIVEA. We observe

that the DIVEA outperforms the GDGS for all combinations of 𝐵,

𝑚 and 𝜇 for both problems. The entropy values of the approaches

are overall increasing for each margin value when the number of

populations increases. The results also show that the DIVEA is able

to more directly improve diversity of the population gathered by

the GDGS approach as the number of the margin increases.

7 CONCLUSIONS
We have presented approaches for creating diverse sets of solutions

for monotone submodular functions under given constraints. Our

diversifying greedy sampling approaches create sets of solutions

with provable approximation guarantees that closely match the

current best performance ratios obtained by greedy algorithms.

Furthermore, we have examined the short-comings in terms of the

entropy diversity measure and proposed an entropy-based evolu-

tionary diversity optimisation approach to improve the diversity

Table 4: Results for the maximum coverage problem with
knapsack constraints for 𝐵 = 100.

𝐵 𝑚 𝜇
Threshold (1) DGS Entropy (2) DIVEA Entropy (3)

mean std mean std stat mean std stat

100

10 5 406.30 0.7022 2.3190 0.3801 3
(−) 5.1566 1.2727 2

(+)

10 10 406.03 0.1826 3.1748 0.2398 3
(−) 5.7382 0.9848 2

(+)

100

10 15 406.00 0.0000 3.4411 0.2587 3
(−) 6.1239 0.9848 2

(+)

10 20 406.00 0.0000 3.6965 0.2307 3
(−) 6.6749 1.0283 2

(+)

100

20 5 398.53 1.6761 3.5986 0.4343 3
(−) 10.0783 1.4947 2

(+)

20 10 397.43 1.0726 5.0012 0.3948 3
(−) 11.5237 1.4219 2

(+)

100

20 15 397.07 0.9444 5.7040 0.3835 3
(−) 11.8965 0.9952 2

(+)

20 20 396.77 0.9714 6.1189 0.4051 3
(−) 12.8706 1.2013 2

(+)

100

30 5 388.57 2.3294 4.3088 0.6259 3
(−) 13.4104 1.4536 2

(+)

30 10 387.93 2.1804 6.2473 0.5190 3
(−) 14.7949 1.3123 2

(+)

100

30 15 386.97 2.1573 7.2866 0.4094 3
(−) 15.7160 1.0320 2

(+)

30 20 386.17 1.7436 7.8370 0.4966 3
(−) 16.1779 1.1061 2

(+)

of the populations obtained by the diversifying greedy sampling

approaches. Our experimental results show that high quality sets of

solutions can be obtained for important submodular optimisation

problems and that the evolutionary diversity optimisation approach

significantly increases the entropy diversity of the sets created.

The EDO approach presented in this paper uses a very simple

(𝜇 + 1) EA. An interesting direction for future research is to design

complex high performing EDO approaches for submodular opti-

misation problems based on the introduced setup. Especially, the

design of mutation and crossover operators that lead to high qual-

ity solutions which are different from the current set of solutions

seems to be a crucial component.
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