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ABSTRACT
Recently, it has been proven that evolutionary algorithms
produce good results for a wide range of combinatorial op-
timization problems. Some of the considered problems are
tackled by evolutionary algorithms that use a representation,
which enables them to construct solutions in a dynamic pro-
gramming fashion. We take a general approach and relate
the construction of such algorithms to the development of al-
gorithms using dynamic programming techniques. Thereby,
we give general guidelines on how to develop evolutionary
algorithms that have the additional ability of carrying out
dynamic programming steps.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Design, Performance, Theory

Keywords
Combinatorial optimization, dynamic programming, evolu-
tionary algorithms

1. INTRODUCTION
Evolutionary algorithms have been shown to be success-

ful for a wide range of optimization problems. While these
randomized search heuristics work well for many optimiza-
tion problems in practice, a satisfying and rigorous mathe-
matical understanding of their performance is an important
challenge in the area of genetic and evolutionary computing.
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Interesting results have been obtained for some important
optimization problems like sorting and shortest paths [18],
spanning trees [15], maximum matchings [7], and minimum
cuts [13, 14]. There are also some results on evolutionary
algorithms acting as approximation algorithms for NP-hard
problems like partition [20], covering [6], and multi-objective
shortest path [9] problems. But a general theoretical ex-
planation of the behavior of evolutionary algorithms is still
missing. The first step in this direction is taken in [17], where
the authors show for an important subclass of optimization
problems, that evolutionary algorithms permit optimal so-
lutions in polynomial time.

The aim of this paper is to make another contribution
to the theoretical understanding of evolutionary algorithms
for combinatorial optimization problems. We focus on the
question how to represent possible solutions such that the
search process becomes provably efficient. Designing an evo-
lutionary algorithm for a given problem, a key question is
how to choose a good representation of possible solutions.
This problem has been extensively studied in the literature
on evolutionary algorithms, for example there are different
representations for the well-known traveling salesman prob-
lem (see e. g. Michalewicz [11]) or NP-hard spanning tree
problems (see e. g. Raidl and Julstrom [16]).

Each of these representations induces a different neighbor-
hood of a particular solution and variation operators such as
mutation and crossover have to be adjusted to the considered
representation. Usually, such representations either lead di-
rectly to feasible solutions for the problem to be optimized or
the search process is guided towards valid solutions by using
some penalty functions. Here, the representation of possi-
ble solutions in combination with some suitable variation
operators may be crucial for the success of the algorithm.

Recently, it has been proven for various combinatorial op-
timization problems that they can be solved by evolutionary
algorithms in reasonable time using a suitable representa-
tion together with mutation operators adjusted to the given
problem. Examples for this approach are the all-pairs short-
est path problem [2] and the traveling salesman problem [19].
The representations used in these papers are different from
the general encodings working with binary strings as consid-
ered earlier in theoretical works on the runtime behavior of
evolutionary algorithms. Instead, the chosen representations



reflect some properties of partial solutions of the problem at
hand that allow to obtain solutions that can be extended
to optimal ones for the considered problem. To obtain such
partial solutions the algorithms make use of certain diver-
sity mechanisms that allow the algorithms to proceed in a
dynamic programming way.

Dynamic programming [1] is a well-known algorithmic
technique that helps to tackle a wide range of problems.
A general framework for dynamic programming has been
considered by e. g. Woeginger [21] and Kogan [10]. The
technique allows the design of efficient algorithms, that solve
the problem at hand to optimality, by extending partial so-
lutions to optimal ones. The goal of this paper is to re-
late the evolutionary approaches given in [2, 19] to dynamic
programming and give a general setup for evolutionary al-
gorithms that are provably able to solve problems having a
dynamic programming formulation. In particular, we show
that any problem that can be solved by dynamic program-
ming in time T has an evolutionary algorithm which solves
the problem in expected time O(T · n · log (|DP |)) with n
being the number of stages and |DP | being the number of
states produced in the dynamic programming.

The rest of the paper is organized as follows. In Section 2,
we introduce a general dynamic programming formulation
and the kind of problems that we want to tackle. This dy-
namic programming approach is transferred into an evolu-
tionary algorithm framework in Section 3. In Section 4, we
show how to obtain evolutionary algorithms carrying out
dynamic programming for some well-known combinatorial
optimization problems. Finally, we finish with some conclu-
sions.

2. DYNAMIC PROGRAMMING
Dynamic programming is a general design paradigm for

algorithms. The basic idea is to divide a problem into sub-
problems of the same type, and to construct a solution for
the original problem using the solutions for the subproblems.
Dynamic programming has been proven to be effective for
many single-objective as well as multi-objective optimization
problems. For some problems it is even the most efficient
approach known for the solution.

2.1 Considered Problems
Consider a multi-objective optimization problem P with

k ∈ N+ being the number of objectives that have to be
optimized. We present such an optimization problem as a
function g : S → Rk where S is called search space, g is
called objective function, and g(S) ⊆ Rk is the objective
space. Note that single-objective optimization is a special
case of multi-objective optimization where the number of
objectives is 1.

For a single-objective optimization problem the goal is to
determine a solution with an optimal objective value where
the total order ≤ or ≥ on the objective space is considered.
For a multi-objective optimization problem there is no nat-
ural total order on the objective space. Hence, a natural
partial order is considered instead, which implies that there
is no single optimal objective vector but a set of optimal
objective vectors.

We introduce the following partial order to define the goal
in multi-objective optimization formally. Throughout this

paper, � denotes Pareto dominance where

(y′
1, . . . , y

′
k) � (y1, . . . , yk)

iff y′
i ≤ yi for all i for minimization problems or y′

i ≥ yi for
all i for maximization problems. In the following, we use the
notation y′ ≻ y as an abbreviation for y′ � y and y 6� y′.
The Pareto front is the subset of g(S) that consists of all
maximal elements of g(S) with respect to �. The goal is to
determine a Pareto-optimal set, that is, a minimal subset of
S that is mapped on the Pareto front.

2.2 Framework for Dynamic Programs
Consider a Dynamic Program (DP) for an optimization

problem P . Suppose, the DP produces new partial solu-
tions in n phases, such that in the i-th phase, a set Si ⊆ S
of partial solutions is created. We use n finite sets Fi of map-
pings F : S → S ′ and a mapping H : S ′ → R with S ∈ S if
H(S) ≤ 0 to describe the DP where S ′ ⊇ S is an extension
of the original search space S. This is a necessary modi-
fication because a mapping F can create a new state that
does not correspond to a feasible solution. We assume that
n and all Fi depend on the length of the input instance and
H depends on the input instance. We call the various F
state transition functions and the H consistency function.

The DP proceeds as follows. In the initialization phase,
the state space S0 is initialized with a finite subset of S. In
phase i, the elements of the state space Si−1 are considered
as partial solutions to P , which can be extended to a fea-
sible solution of P . In the i-th phase, the state space Si is
computed using the state space Si−1 according to

Si = {F (S) | S ∈ Si−1 ∧ F ∈ Fi ∧H(F (S)) ≤ 0}. (1)

In the process, the consistency function H serves to keep the
infeasible partial solutions emerging in phase i from being
included into the current state space Si.

To improve the runtime, most DPs utilize the Bellman
principle (see e. g. [1]). The basic idea is to dismiss un-
promising partial solutions without affecting the optimality
of the final set of solutions. We describe this principle as a
dominance relation among the states in each state space Si.

We call EXTk(S) ∈ Sn a feasible extension of state S ∈ Sk

if there are Fi ∈ Fi, i = k − 1, . . . , n with

EXTk(S) = Fn(Fn−1(. . . Fk+1(S) . . . ))

and

H(Fi(Fi−1(. . . Fk+1(S) . . . ))) ≤ 0

for all i = k + 1, . . . , n. Consider two states S, S′ ∈ Sk. As-
sume that for all feasible extensions EXTk(S) of state S to
a complete solution there is a feasible extension EXTk(S′)
of state S′ to a complete solution where g(EXTk(S′)) is
at least as good as g(EXTk(S)), that is, g(EXTk(S′)) �
g(EXTk(S)). In this case, we say that state S ∈ Sk is dom-
inated in extension by state S′ ∈ Sk. A state without any
feasible extensions is dominated in extension by all states
by definition. Such a situation allows to dismiss S without
affecting the optimality of the final set of solutions.

Straightforward verification of this relation by checking
all possible extensions is very inefficient. To ease the exclu-
sion of unpromising states, we consider another partial order
�dom defined on S. We will see, that a partial order �dom

that induces dominance in extension can be used to dismiss
unpromising solutions. We say that state S is dominated by



state S′ iff S �dom S′. Consider a subset Si of S. We call
Ti ⊆ Si a dominating subset of Si with respect to �dom iff
for all states S ∈ Si there is a state S′ ∈ Ti with S �dom S′.
We use the notation M(Si,�dom) to denote the set of all
dominating subsets of Si with minimum cardinality.

It is crucial that the partial order �dom can be checked
efficiently. Hence, we are content with partial orders �dom

that are induced via S �dom S′ iff f(S) �par f(S′) using
a function f : S → Rd and a partial order �par on Rd. We
assume that f can be evaluated efficiently and �par can be
decided efficiently.

The following proposition indicates that it is sufficient
to keep a dominating subset of states constructed in each
phase k, rather than the full subsets Sk.

Proposition 1. Let the dominating sets Tk be computed
according to

Tk ∈M({F (S) | S ∈ Tk−1∧F ∈ Fk∧H(F (S)) ≤ 0},�dom).

If dominance implies dominance in extension then

g(Tn) ∈M(g(Sn),�).

Proof. Suppose the contrary. The equation (1) finally yields
a state corresponding to an optimum, so there exist such k ∈
{1, . . . , n} and S ∈ Sk \Tk, that some extension EXTk(S) is
optimal, and, at the same time, no extension EXTk(S′) with
S′ ∈ Tk gives an optimum. But by definition, the dominat-
ing set Tk contains some element S′, dominating S. Conse-
quently, S′ also dominates S in extensions and g(EXTk(S′))
is optimal as well. This gives a contradiction.

Note that the size of the Ti is uniquely determined. The
last proposition implies that if the Pareto front of g is con-
tained in g(Sn), it is also contained in g(Tn).

We consider in addition the following three conditions that
express desirable properties of dominance relations.

Condition 1 (C.1). For any S, S′ ∈ Si, if S �dom S′

then F (S) �dom F (S′) for all F ∈ Fi+1.

The first condition C.1 guarantees that the dominance
relation between two states transfers from one round to the
next.

Condition 2 (C.2). For any S, S′ ∈ Si, if S �dom S′

and H(S) ≤ 0 then H(S′) ≤ 0.

The second condition C.2 expresses that infeasible states
cannot dominate feasible states.

Condition 3 (C.3). For any S, S′ ∈ Sn, if S �dom S′

then g(S) � g(S′).

The last condition C.3 establishes a connection between
the dominance relation and the objective function g that
has to be optimized. It states that after the last round
dominance S �dom S′ of states S, S′ implies Pareto dom-
inance g(S) � g(S′) of the corresponding function values
g(S), g(S′).

The next proposition shows, that �dom implies dominance
in extension if C.1–C.3 are fulfilled.

Proposition 2. Suppose that C.1, C.2, and C.3 hold for
�dom. Then for any k ∈ {0, . . . , n} and S, S′ ∈ Sk, such
that S �dom S′, the state S′ also dominates S in extensions
in phase k.

Algorithm 1 Dynamic Program for g

1: T0 ← ∅
2: for S ∈ S0 do

3: if ∄S′ ∈ T0 : S′ �dom S then

4: T0 ← (T0 \ {S
′ ∈ T0 | S ≻dom S′}) ∪ {S}

5: end if

6: end for

7: for i = 1 to n do

8: Ti ← ∅
9: for S ∈ Ti−1 and F ∈ Fi do

10: if H(F (S)) ≤ 0 and ∄S′ ∈ Ti : S′ �dom F (S) then

11: Ti ← (Ti \ {S
′ ∈ Ti | F (S) ≻dom S′}) ∪ {F (S)}

12: end if

13: end for

14: end for

15: return {S ∈ Tn | ∄S′ ∈ Tn : g(S′) ≻ g(S)}

Proof. If in phase k the state S has no feasible extensions
then the required result follows trivially.

Suppose, S has a feasible extension

EXTk(S) = Fn(Fn−1(. . . Fk+1(S) . . . )).

Then n− k applications of condition C.1 produce

Fn(Fn−1(. . . Fk+1(S) . . . )) �dom Fn(Fn−1(. . . Fk+1(S
′) . . . )).

Furthermore, n − k applications of condition C.2 lead to
H(Fi(. . . Fk+1(S

′) . . . )) ≤ 0 for all i = k + 1, . . . , n since
H(Fi(. . . Fk+1(S) . . . )) ≤ 0. Hence, S′ has a feasible exten-
sion

EXTk(S′) = Fn(Fn−1(. . . Fk+1(S
′) . . . ))

with EXTk(S) �dom EXTk(S′). Finally, g(EXTk(S′)) is at
least as good as g(EXTk(S)) due to condition C.3.

Expressing the computation according to the equation
within Proposition 1 in algorithmic form, the general scheme
of a DP for P is presented in Algorithm 1.

We call a DP correct if the Pareto front of g is contained
in g(Sn) and �dom implies dominance in extension.

The runtime of a DP depends on the computation time
θF for the state transition functions F ∈ Fi, the computa-
tion time θH for the consistency function H, and the com-
putation time θdom for the dominance relation �dom. Let
κ := max1≤i≤n |Fi|. The body (lines 10–12) of the main loop
(lines 7–14) in Algorithm 1 is executed

∑n

i=1
|Ti−1| · |Fi| ≤

κ ·
∑n

i=1
|Ti−1| times. Hence, considering a straightforward

implementation of Algorithm 1, the computation time for
the main loop is O

(

κ ·
∑n

i=1
|Ti−1| · (θF + θH + |Ti| · θdom)

)

.
We denote the computation time for initializing T0 with θini

(lines 1–6) and the computation time for presenting the re-
sult with θout (line 15), which leads to an overall runtime
of

O

(

θini + κ ·
n
∑

i=1

|Ti−1| · (θF + θH + |Ti|θdom) + θout

)

. (2)

Note that the runtime of the DP is polynomially bounded
in the input length if θini, n, |Ti| for i = 0, . . . , n, κ, θF ,
θH, θdom, and θout are polynomially bounded in the input
length. Furthermore, for d ≤ 2 the dominance check can
be sped up to take at most log (|Ti|) · θdom comparisons by
sorting the entries of the objective vector according to the
first coordinate.



Algorithm 2 Evolutionary Algorithm for g

1: P ← ∅
2: for I ∈ P0 do

3: if ∄I ′ ∈ P : I ≺dom I ′ then

4: P ← (P \ {I ′ ∈ P | I ′ �dom I}) ∪ {I}
5: end if

6: end for

7: loop

8: I ← mut(sel(P))
9: if ∄I ′ ∈ P : I ≺dom I ′ then

10: P ← (P \ {I ′ ∈ P | I ′ �dom I}) ∪ {I}
11: end if

12: end loop

13: return {out(I) | I ∈ P ∧ ∄I ′ ∈ P : g(out(I)) ≺
g(out(I ′))}

3. EVOLUTIONARY ALGORITHMS
In the following, we show how dynamic programming can

be carried out by evolutionary algorithms. To this aim, we
state a general formulation of an evolutionary algorithm and
then describe how the different components have to be de-
signed.

3.1 Framework for Evolutionary Algorithms
An evolutionary algorithm consists of different generic

modules, which have to be made precise by the user to best
fit to the problem. Experimental practice, but also some
theoretical work (see e. g. [12, 3, 5, 4]), demonstrate that
the right choice of representation, variation operators, and
selection method is crucial for the success of such algorithms.

We assume that the problem to be solved is given by a
multi-objective function g that has to be optimized. We
consider simple evolutionary algorithms that consist of the
following components.

The algorithm (see Algorithm 2) starts with an initial pop-
ulation P0. During the optimization the evolutionary algo-
rithm uses a selection operator sel(·) and a mutation opera-
tor mut(·) to create new individuals. The d-dimensional fit-
ness function together with a partial order�par on Rd induce
a partial order �dom on the phenotype space, which guides
the search. After the termination of the EA, an output
function out(·) is utilized to map the individuals in the last
population to search points from the original search space.

3.2 Defining the Modules
We now consider how the different modules of the evolu-

tionary algorithm have to be implemented such that it can
carry out dynamic programming. To do this, we relate the
modules to the different components of a DP. Consider a
problem given by a multi-objective function g that can be
solved by a dynamic programming approach. We use the
indices DP and EA to differentiate between the components
of the DP and the EA. The EA works with the following
setting.

We use S ′
EA := {0, . . . , n} × S ′

DP as the phenotype space.
The initial population is P0 = {0}×S0 where S0 is the initial
state space of the DP. The selection operator sel(·) chooses
an individual I ∈ P uniformly at random for mutation. For
an individual (i, S), the mutation operator mut(·) chooses a
state transition function F ∈ Fi+1 uniformly at random and
sets mut((i, S)) = (i + 1, F (S)). We use the fitness function

fEA : S ′
EA → {0, . . . , n} × (R ∪ {±∞})d with

fEA((i, S)) =

{

(i) ◦ fDP(S) if H(S) ≤ 0

(i) ◦ (±∞)d if H(S) > 0

where ◦ denotes the concatenation of two vectors. The
meaning of the fitness function is as follows. If an indi-
vidual (i, S) is feasible, that is, H(S) ≤ 0, it is mapped on
(i, y1, . . . , yd) where (y1, . . . , yd) = fDP(S). Otherwise, it is
mapped on (i,±∞, . . . ,±∞) where y �DP

par (±∞, . . . ,±∞)
for all y ∈ fDP(S), which means that the individual is worse
than all feasible individuals. We incorporate the partial or-
der �EA

par that is defined as (i′, y′) �EA
par (i, y) iff i′ = i and

y′ �DP
par y into the EA to guide the search. Finally, we uti-

lize the output function outEA((i, S)) = S. At the end of
a run of the EA, the output function is needed to remove
the additional information that is used to store the number
of a certain round of the underlying dynamic program and
transform an individual into a search point for the problem
that has to be solved.

3.3 Runtime of the Evolutionary Algorithm
Our goal is to show that the evolutionary algorithm solves

the problem given by g efficiently if the dynamic program-
ming approach does. To measure the time the evolution-
ary algorithm needs to compute an optimal solution for the
given problem, we analyze the expected number of fitness
evaluations to come up with an optimal solution. This is
also called the expected optimization time of the considered
algorithm, which is a common measure for analyzing the
runtime behavior of evolutionary algorithms.

The next theorem relates the expected optimization time
of the EA to the runtime of the corresponding DP.

Theorem 1. Let a DP be defined as in Algorithm 1 and
an EA defined as in Algorithm 2. Then the DP has a run-
time of

O

(

θini + κ ·
n
∑

i=1

|Ti−1| · (θF + θH + |Ti| · θdom) + θout

)

and the EA has an expected optimization time of

O

(

κ ·
n
∑

i=1

|Ti−1| · n · log

(

n
∑

i=1

|Ti−1|

))

.

Proof. For the proof of the optimization time we will make
some pessimistic assumptions on how the process works. Al-
though the population starts with P0 we will assume that
it has size |P| =

∑n

i=0
|Ti| =: |DP | right from the start,

where by |DP | we denote the cardinality of the set of states
produced by the DP. Furthermore assume that the optimiza-
tion process works in stages 1 ≤ i ≤ n, whereas stage i + 1
starts after stage i has been finished. Stage i finishes after
every non-dominated S ∈ Ti has become part of the popula-
tion P. Thus, in stage i+1 every Pareto-optimal individual
S ∈ Ti can be used for the selection and mutation to an in-
dividual in Ti+1. Consider the event that a non-dominated
individual (i + 1, S) with S ∈ Ti+1 is created by the EA.
This implies that no other (i + 1, S′) with S′ ∈ Ti+1 and
f((i + 1, S′)) �par f((i + 1, S)) is part of population P. Ob-
viously there exists an individual (i, S′′) with S′′ ∈ Ti and a
F ∈ Fi+1 such that (i + 1, S′) = mut((i, S′′)).



Let Xi be the random variable denoting the number of
iterations until stage i is completed. Then the optimization
time is given by E[X] with X = X1 + . . . Xn.

The probability for a successful mutation in stage i+1 de-
pends on the current size of the population |P| ≤ |DP | and
the number of state transition functions Fi. Let t denote
the number of non-dominated individuals that have been
added at stage i + 1. Then there are |Ti+1| − t possibili-
ties to add a new non-dominated individual. The probabil-
ity for a successful mutation is thus no less than (|Ti+1| −
t)/(|DP | · |Fi+1|) with an expected waiting time of at most
(|DP | · |Fi+1|)/(|Ti+1|− t) for this geometrically distributed
variable. The expected waiting time to finish stage i + 1 is
thus given by

E[Xi+1] ≤

|Ti+1|
∑

t=1

|DP | · |Fi+1|

t
= |DP | · |Fi+1| ·H|Ti+1|,

with Hk being the k-th harmonic number Hk :=
∑k

i=1
1
k
.

This leads to an overall expected number of iterations

E[X] ≤
n−1
∑

i=0

|DP | · |Fi+1| ·H|Ti+1|

≤ κ · |DP | ·
n−1
∑

i=0

H|Ti+1|

≤ κ · |DP | · n · (ln (|DP |) + 1).

A similar inspection as in Subsection 2.2 reveals that for
|DP | =

∑n

i=1
|Ti−1| the expected runtime of the EA is

O
(

θini + κ · n · log (|DP |)

·
∑n

i=1
|Ti−1| · (θF + θH + |Ti| · θdom) + θout

)

if the individuals of the population are stored in n+1 disjoint
sets according to the first coordinate i, and

O
(

θini + κ · n · log (|DP |)

· |DP | · (θF + θH + |DP | · θdom) + θout

)

if the dominance check is done against the whole population.

4. EXAMPLES
In this section, we point out how the framework presented

in the previous section can be used to construct evolutionary
algorithms that have the ability of simulating dynamic pro-
gramming for well-known combinatorial optimization prob-
lems. The approach followed here is to describe the compo-
nents of a dynamic programming algorithm for the solution
of a given problem. The existence and functionality of an
evolutionary algorithm for the solution of the problem fol-
lows from Section 3.

4.1 All-Pairs Shortest Path Problem
A classical problem that fits into the DP framework is

the all-pairs shortest path (APSP) problem. Given an undi-
rected connected graph G = (V, E) and positive edge weights
w : E → R+, the task is to find for each pair (u, v) of vertices
a shortest path connecting them.

In [2] it has been shown that the problem is solved by
evolutionary algorithms that follow the idea of dynamic pro-
gramming in expected polynomial time. In the following, we
discuss the basic ideas and show how the algorithm fits into
our framework.

A basic observation is that sub-paths of shortest paths
are shortest paths again. Hence a shortest path connecting
u and v can be obtained from appending the edge (x, v),
where x is a neighbor of v, to a shortest path from u to x.
This allows a very natural DP formulation, since the partial
solutions that often are added artificially to the search space,
here are an integral part of it.

For the APSP, the search space S naturally is the set of all
paths in G. We model paths via finite sequences of vertices,
and do not allow cycles. Since adding an edge to a path may
create a cycle, which is an infeasible solution, let us extend
this search space to the set S ′ of all sequences of vertices of
length at most n. The set S0 of initial solutions is the set
of all paths of length 0, that is, of all sequences consisting
of a single vertex. Now for all i, we define Fi := {Fv |
v ∈ V } ∪ {id}, where Fv : S ′ → S ′ is the mapping adding
the vertex v to a sequence of vertices. To exclude invalid
solutions, let us define H(s) to be −1, if s is a path in G,
and 1, if not. We can omit using the out-operator here.

It remains to define when one solution dominates another.
This can be done in the framework of multi-objective op-
timization by defining a relatively artificial multi-objective
objective function. A more natural way is to put s � s′ if
and only if the paths s and s′ connect the same two vertices
and s′ is not longer than s.

Since the length of the path arising from extending an ex-
isting path by an edge depends monotonically on the length
of the existing graph, the Bellman principle is easily cor-
rectly implemented through the natural dominance relation
which lets s′ dominate s if and only if s � s′. In conse-
quence, our solution set contains at most one path for each
pair of vertices.

The resulting algorithm following the dynamic program-
ming approach now does the following. It starts with all
paths of length zero as solution set. It then repeats n times
the following. For each path in the solution set and each
vertex, it appends the vertex to the path. If the resulting
path dominates an existing solution with same end vertices,
it replaces the latter. Apart from implementation issues
(namely rather only storing the length of the paths instead
of storing the whole paths), this is a variant of the well-
known Floyd-Warshall algorithm. Plugging these ideas into
the framework of Algorithm 2, we obtain an EA with an
expected runtime of O

(

n4 log (n)
)

due to Theorem 1. This

bound can be further improved to Θ(n4) as has been shown
in [2].

4.2 Traveling Salesman Problem
In the following, we consider the traveling salesman prob-

lem (TSP) problem as a prominent NP-hard example.
The input for the TSP consists of a complete graph G =

(V, E) with a set of nodes V = {1, 2, . . . , n} and non-negative
edge weights w : E → R+

0 . It is required to find a permuta-
tion of all nodes (v1, . . . , vn), such that the TSP tour length
∑n

i=2
w(vi, vi−1) + w(vn, v1) is minimized. Without loss of

generality we can assume that v1 = 1, that is, the TSP tour
starts in the fixed vertex 1.

In [19] an evolutionary algorithm with dynamic program-



ming features has been introduced. In the following, we
show how the algorithm fits into our framework. The search
space S used in the dynamic programming algorithm of Held
and Karp [8] consists of all pairs (i, M) with M ⊆ V and
i ∈ M . S ′ is the extended search space of all sequences of
nodes up to length n. A pair (i, M) represents a Hamilto-
nian path starting in vertex 1 then running over all nodes
from M and ending in vertex i. The initial population P0

consists of n − 1 elements: for each i = 2, . . . , n there is an
individual (i, {i}).

The set Fi for all i consists of n − 1 functions: Fi =
{id} ∪ {Fv | v ∈ V } with Fv : S ′ → S ′ being the mapping
that adds vertex v to the existing sequence of vertices id.
For invalid solutions, which are characterized by not being
Hamiltonian paths on Fv(s) with s ∈ S ′, the mapping H(s)
computes 1 and 0 otherwise.

Let us define the dominance relation s � s′ if and only if
s and s′ are Hamiltonian paths on the same ground set M
with the same end vertex i and path s′ is not longer than
s. Consequently, there is always only one individual for a
specific (i, M) in the population. Substituting these com-
ponents with the components in Algorithm 1, we see that
we get the well-known dynamic programming algorithm of
Held and Karp [8]. Algorithm 1 initializes the states of the
dynamic program with the shortest possible optimal Hamil-
tonian paths (v, {v}) for all v ∈ V \ {1}. In each subse-
quent iteration i the algorithm takes each partial solution s
obtained in the preceding iteration and checks for every ap-
plication of the state transition function F (s) with F ∈ Fi

whether H(F (s)) is a feasible partial solution, that is not
dominated. If it is not dominated then F (s) is added to
the set Ti of new partial solutions by replacing dominated
partial solutions s′ defined on the same ground set with the
same end vertex of the Hamiltonian path.

Due to Theorem 1 the expected optimization time of the
evolutionary algorithm is O

(

n3 · log (n) · 2n
)

. This bound

can be further improved to O
(

n3 · 2n
)

as shown in [19].

4.3 Knapsack Problem
We have already seen that the known evolutionary algo-

rithms for the APSP [2] and the TSP [19] fit into the pro-
posed framework. Another well-known combinatorial opti-
mization problem that can be solved by dynamic program-
ming is the knapsack problem. We consider this problem as a
third example on how to obtain evolutionary algorithms that
have the additional ability of carrying out dynamic program-
ming steps. The input for the knapsack problem consists of
n items where each item i has an associated weight wi and
profit pi, 1 ≤ i ≤ n. Additionally a weight bound W is given.
The goal is to determine an item selection K ⊆ {1, . . . , n}
that maximizes the profit

∑

i∈K
pi, subject to the condition

∑

i∈K
wi ≤W .

We fit the problem into above framework using the search
space

S :=

{

x ∈ {0, 1}n |
n
∑

i=1

xi · wi ≤W

}

and the pseudo-Boolean function g : S → R with

g(x) :=

n
∑

i=1

xi · pi

that has to be maximized.

The classical DP for the knapsack problem works as fol-
lows. It starts with the state space S0 = {0n} containing a
state that encodes the selection of no items. The DP runs
through n rounds. In each round it tries to add the i-th
item to all item selections known so far. Formally, we have
Fi = {F0, Fi} with F0(x) := x and Fi(x) := (x1, . . . , xi−1,
1, xi+1, . . . , xn). The new item selection x is accepted if it
does not violate the weight limit, that is, H(x) ≤ 0 is ful-
filled where H(x) =

∑n

j=1
xj · wj −W .

To omit unpromising solutions we use the function f : S →
R2 with

f(x) =

(

n
∑

i=1

xi · pi,
n
∑

i=1

xi · wi

)

and the partial order �par with (p′
1, w

′) �par (p1, w) iff p′
i ≥

pi and w′ ≤ w. The worst-case runtime of the explained DP
is O(n ·W ) since

∑n

i=1
|Ti−1| ≤ n · (W +1), that is, we store

on the i-th level for each weight between 0 and W at most
one set of at most i items.

The expected optimization time of the EA for the multi-
objective knapsack problem is O

(

n2 ·W · log (n ·W )
)

due to
Theorem 1.

5. CONCLUSIONS
We have examined how to choose a representation for an

evolutionary algorithm such that it obtains the ability to
carry out dynamic programming. Based on a general frame-
work for dynamic programming we have given a framework
for evolutionary algorithms that have a dynamic program-
ming ability and analyzed the optimization time of such
an algorithm depending on the corresponding dynamic pro-
gramming approach. By considering well-known combinato-
rial optimization problems, we have shown that our frame-
work captures known evolutionary algorithms proposed in
the literature and allows to treat other problems such as the
knapsack problem as well.
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