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Abstract. Constrained optimisation problems appear frequently in important real
world applications. In this chapter, we study algorithms for constrained optimi-
sation problems from a theoretical perspective. Our goal is to understand how the
fitness landscape influences the success of certain types of algorithms. One im-
portant feature for analysing and classifying fitness landscape is its ruggedness.
It is generally assumed that rugged landscapes make the optimisation process by
bio-inspired computing methods much harder than smoothed landscapes which
give clear hints towards an optimal solution. We will introduce different meth-
ods for quantifying the ruggedness of a given constrained optimisation problem.
They, in particular, take into account on how to deal with infeasible regions in the
underlying search space.
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1 Introduction

Constrained optimisation problems (COP)s, especially non-linear ones, are very
important and widespread in many real world applications such as chemical en-
gineering, VLSI chip design and structural design [3]. Various algorithmic ap-
proaches have been introduced to tackle constrained optimisation problems. The
major component of these optimisation algorithms is devoted to the handling of
the involved constraints.
Different types of evolutionary algorithms such as evolutionary strategies [16],
differential evolution [19], and particle swarm optimisation (PSO) [2] have been
applied to constrained continuous optimisation problems. Constraint handling
mechanisms that are frequently used include penalty functions, decoder based
methods, and special operators that separate the treatment of the objective func-
tion and the constraints. We refer the reader to [13] for an overview on the differ-
ent types of methods. Among various types of optimisation algorithms, penalty
methods are well-known as one of the most successful and popular approaches
for dealing with constraints. They penalise the violation of constraints by adding
penalty values to the fitness value of a given solution. Effectively, this transforms
the constrained problem into an unconstrained one. Turning constrained optimi-
sation problems into unconstrained ones by using penalty functions makes the



problem easily accessible to a wide range of methods for unconstrained optimi-
sation and can be regarding as one of the major reasons for the popularity of
penalty functions.
There is a wide range of optimisation algorithms for constrained continuous op-
timisation problems and their performances are usually evaluated based on the
results of popular benchmark problems [9, 6]. These benchmark problems are de-
signed to impose different types of difficulties for optimisation algorithms. As
evolutionary algorithms make heavy use of random decisions, it is a hard to un-
derstand the behaviour of these algorithms from an analytic perspective. More
importantly, it is very hard to predict which algorithm would perform best for a
newly given real-world optimisation problem. Mersmann et al [12] have proposed
the following steps to select the best possible algorithm from a given suite of al-
gorithms. First, one has to extract important problem properties from the class
of problems that is under investigation. Secondly, it is necessary to analyse the
performance of different algorithms based on the problem properties and build
a prediction model which allows to select the best possible algorithm based on
problem characteristics.
There are various problem properties associated with the fitness landscape. In
other words, analysing the fitness landscape helps us to classify them with re-
lated characteristics that make problems easy or hard to solve by certain types of
algorithms. In recent years, fitness landscape analysis has become very popular
to describe the characteristics of optimisation problems. Important attributes that
are associated with fitness landscapes and that impact the optimisation process of
evolutionary algorithms include the smoothness, multi-modality, feasibility rate
and variable separability of the landscape and the considered problem [14].
Among several characteristics associated with fitness landscapes, the notion of
fitness landscape ruggedness plays a vital role in determining the problem dif-
ficulty. If the objective function is unsteady and goes up and down frequently,
choosing the right direction to continue becomes difficult for many solvers. Since
ruggedness and problem difficulty are closely related to each other, many studies
have been conducted to analyse this feature. For discrete landscapes, one im-
portant approach is to consider autocorrelations by calculating the correlation of
fitness values of search points that are visited by a random walk on the land-
scape [22]. Furthermore, there have been many studies that extend the basic au-
tocorrelation approach to provide additional insights on fitness landscapes [1, 5].
One of the drawbacks of using autocorrelation by these statistical analysis tech-
niques is that the calculated value is a vague notion that does not clearly reflect the
landscape ruggedness. Thus, Vassilev proposed a new technique which is based
on the assumption that each landscape is an ensemble of different objects (the
nodes seen by a random walk on the fitness landscape), which can be grouped by
their form, size and distribution [20]. Vasillev’s apprach was applicable to discrete
problems. For real parameter landscapes, Malan [8] used Vassilev’s information
theoretic analysis to measure the fitness landscape ruggedness in the continuous
domain. So far, these landscape analysis techniques have been conducted only for
unconstrained or discrete problems. Measuring the landscape ruggedness for con-
strained continuous problems imposes additional challenges and we will propose
how to tackle them in this chapter.
We propose an approach to measure the fitness landscape ruggedness of con-
strained continuous optimisation problems. The quantification of ruggedness com-
bined with other analytical problem characteristics can help to build an algorithm



selection model based on the relation of different algorithms and problem prop-
erties. This chapter includes a methodology for quantifying fitness landscape
ruggedness of constrained continuous problems. In order to do this, we extend
Malan’s approach to quantify the fitness landscape ruggedness of constrained
continuous problems. The information obtained by using simple random walks
on constrained problems landscape is not useful enough since it is mostly re-
lated to infeasible areas which are unlikely to be seen by the solver. To cope with
constraints in nearly infeasible problems, our approach replaces Malan’s random
walk with a biased one. The obtained samples are used to quantify the ruggedness
of landscapes by using the approach of Vassilev [20]. We evaluate our approach
on well-known benchmarks taken from the recent CEC competitions [9] and dis-
cuss the benefits and drawbacks of our new approach.
The remainder of this chapter is organized as follows: In Section 2, we intro-
duce constrained continuous optimisation and discuss approaches that have been
used to analyse the ruggedness of unconstrained fitness landscapes. We present
our approach for quantifying ruggedness of constrained continuous fitness land-
scapes in Section 3 and the results of our experimental investigations in Section 4.
Finally, we finish our research with some concluding remarks.

2 Preliminaries

In this section, we introduce basic notations and summarize previous works on
measuring the ruggedness of fitness landscapes.

2.1 Constrained continuous optimisation problem

Constrained continuous optimisation problems are optimisation problems where
a function on real-valued variables should be optimized with respect to a given
set of constraints. Constraints are usually given by a set of inequalities and/or
equalities. Without loss of generality, we present our approach for minimization
problems. Formally, we consider single-objective functions f : S→R, with S ⊆
Rn. The constraints impose a feasible subset F ⊆ S of the search space S and the
goal is to find an element x ∈ S∩F that minimizes f .
We consider problems of the following form:

Minimize f (x), x = (x1, . . . ,xn) ∈Rn (1)

such that x ∈ S∩F .
The feasible region F ⊆ S of the search space S is defined by

li ≤ xi ≤ ui, 1≤ i≤ n (2)

where li and ui are lower and upper bounds on the variable xi, 1 ≤ i ≤ n. Addi-
tional constraints are given by the functions

gi(x)≤ 0, 1≤ i≤ q,

hi(x) = 0, q+1≤ i≤ p

In order to work with iterative optimisation algorithms for these problems, it is
common to relax the equality constraints



hi(x) = 0, q+1≤ i≤ p

to

|hi(x)| ≤ ε, q+1≤ i≤ p (3)

where ε is a very small positive value that determines how much the original
constraints can be violated. In our experimental study, we will work with ε =
0.0001 which is the same setting as used in [9].

2.2 Fitness landscape ruggedness analysis using the entropy
measure

A fitness landscape (see [18]) is given by a search space S, a fitness function
f : S→ R which assigns a value f (s) to each search point s ∈ S, and a function
ν : S→ 2S that assigns to each search point s, a set ν(s)⊆ S of search points. The
elements in ν(s) are called the neighbours of s.
Various techniques have been used for the statistical analysis of fitness land-
scapes. Popular techniques measure the correlation of the search points visited
by a random walk algorithm [22, 7, 10]. However, it has been shown that this
information is very basic and not very useful to reflect problem difficulty [11].
Vassilev [20] conducted an information theoretic approach to quantify fitness
landscape ruggedness. The difference between Vassilev’s and the previous ap-
proaches is that his technique focuses on the relation between ruggedness and
neutrality of the problem landscape. Vassilev’s method performs a random walk
on a fitness landscape to generate a sequence of fitness values { ft}n

t=0. This ran-
dom walk starts from a random position on a discrete landscape and moves to
its neighbor using bit flips. The aim of this method is to extract a ensemble of
objects from a sequence of fitness values. These objects can be classified into 3
categories:

– Flat objects: The fitness value of each point is similar to its two visited neigh-
bours (predecessor and successor).

– Isolated objects: Each point has higher or lower fitness value comparing to
its two neighbours.

– Points which do not belong to the former two groups.
The aim of the approach is to extract the ensemble of objects mentioned above
from the values in a sequence of fitness values. The following function represents
the time series as a set of objects. The ensemble is defined as a string S(ε) =
(s1s2s3 . . .sn) with si ∈ {1̄,0,1} given by

si =Ψft (i,ε) =


1̄, if fi− fi−1 <−ε

0, if | fi− fi−1| ≤ ε

1, if fi− fi−1 > ε

(4)

where the parameter ε is the real positive number that represents the accuracy
of the calculation of the string S(ε). According to the function, if ε = 0 then the
function will be very sensitive to the differences of points. It can be observed that
increasing the value of ε reduces the sensitivity of the function. Therefore, if the
value of ε equals to the difference of highest and lowest points in the walk, then
the fitness sequence will only consist of zeros.



Table 1: Various sub blocks in Si considered as rugged objects
Sub block 1̄0 1̄1 01 10 11̄ 01̄

Object Type Rugged Rugged Rugged Rugged Rugged Rugged

Object Figure

Table 2: Various sub blocks in Si considered as flat objects
Sub block 00 1̄1̄ 11

Object Type Flat Flat Flat

Object Figure

To measure the ruggedness, the entropy of the string S(ε) is calculated as follows:

H(S(ε)) =− ∑
p 6=q

P[pq]log6P[pq] (5)

where pq is a substring of the string S(ε) consisting of two elements. Further-
more, H(S(ε)) is the information content which is an estimation of variety in
different shapes within the string of S(ε). This measurement is used to charac-
terise the landscape ruggedness with respect to the flat areas where neutrality is
present. P[pq] refers to the frequency of the blocks where p and q have different
values (p 6= q):

P[pq] =
n[pq]

n
(6)

In other words, in order to measure ruggedness with respect to neutrality, it is
necessary to include the rugged block in our estimation (p 6= q) . Thus, sub blocks
with two similar elements are excluded (case p = q) in this function. The formula
calculates the frequencies of sub block with different symbols. As it is discussed
above, since there are six different possibilities of rugged sub blocks in the string
(according to Table 1), the logarithm base is set to 6. The different possibilities
of rugged objects are considered as isolated area which each point has different
values. Table 1 and 2 show different possibilities of rugged and flat sub blocks of
pq in the string of S(ε).
As discussed earlier, the variable ε controls the sensitivity of the function Ψ (see
Equation 4). It can be observed that greater values for ε lead to more neutrality
in the measurement. It is suggested that using smaller values of ε makes the
behaviour of H(S(ε)) significant for characterising the ruggedness with respect
to the landscape neutrality [21]. Therefore, for comparing various problems with
different fitness ranges, the smaller values of ε are used for H(S(ε)). The values
of ε used in [8] are:

ε = 2−k
ε
∗ (k = 1,2, . . . ,8). (7)

in which, ε∗ is the smallest value that generates all sub blocks as zeros and con-
sequently the landscape becomes flat. Also, k is considered 1 to 8 to calculate
smaller values for εs. Note that the parameter ε∗ can be calculated as the differ-
ence of highest and lowest fitness that has been found in the random walk.



1. Choose a random place within the bound as a starting the point
2. Generate all the neighbours of the chosen point using permutation
3. Choose one neighbour randomly and save its value
4. Go back to step 2

Algorithm 1: Random Walk

1. Input: Problem domain (domain), number of the dimensions (dimension)
and number of steps (MaxStepNumber) for the walk

2. Calculate the maximum step size

MaxStepSize =
Range of the problem domain

100
3. Set counter = 0 and create an array steps to save the steps in the walk
4. Assign a random position to steps[0] within the boundaries of the problem
5. Repeat
6. For every dimension i of the problem
7. currentStep = random(0,MaxStepSize);
8. steps(counter) = steps(counter-1)+currentStep;
9.

10. If steps(counter) > boundaries
11. steps(counter) = steps(counter-1)-(Range of the problem domain);
12. Endif
13. Endfor
14. Until (counter < MaxStepNumber)

Algorithm 2: Random increasing walk algorithm.

An entropic measure H(S(ε)) requires a sequence of search points S(ε). In order
to generate a set of time series, a simple random walk on a landscape path can be
used (see Algorithm 1).
The above method was used for measuring the ruggedness of discrete problems.
The major issue of using this approach for continuous problems is that (unlike the
discrete problems) it is not possible to generate or access all possible neighbours
of visited individual. Thus, Malan and Engelbrecht [8] modified the approach to
use it for unconstrained continuous problems. The proposed approach adopts a
random increasing walk which increases the step size over time. Furthermore,
the step size is decreased if the algorithm produces a solution that is not within
the boundaries given by the constraints. The algorithm for the random increasing
walk proposed in [8] is given in Algorithm 2. Here, we assume that the variable
range is the same for all dimensions which implies that the maximum step size
is the same for all dimensions. The algorithm can be easily adjusted to problems
with different variable ranges by using a maximum step size for each variable.

3 Ruggedness quantification for constrained
continuous optimisation

In this section, we present a new approach for quantifying the ruggedness of a
fitness landscape of a constrained continuous optimisation problem. Since we are



working on constrained optimisation problems, dealing with infeasible areas is
the important and challenging part. Often in these problems, the infeasibility rate
is high and it might be even very hard to find one feasible solution. This implies
that random walk methods are usually not that helpful as they would produce
infeasible solutions most of the time. Most constraint handling methods direct
the search process to feasible regions of the search space and therefore often
allow to optimize in the feasible region of the search space which might be a very
small proportion of the size of the overall space.

3.1 Ruggedness Quantification

In the following, we discuss drawbacks of applying previous approaches for
ruggedness quantification when dealing with constrained continuous optimisa-
tion problems. Afterwards, we explain the solution to these issues following by
our new approach. As mentioned in the previous section, random walk algorithms
have been used to measure the ruggedness of fitness landscapes. However, ran-
dom walk algorithms are often not useful when it comes to constrained optimisa-
tion problems. We discuss the different reasons in the following.
A random walk algorithm is not accurate enough to reflect the fitness landscape
as a whole which is already true for unconstrained optimisation but becomes even
more evident when dealing with constrained problems. Random walk algorithms
cannot discriminate accurately between two different search spaces (feasible and
infeasible space) since they do not make decision based on the fitness values.
Experiments show that the statistics obtained by random walks on landscapes are
biased to areas with low fitness [17]. Hence, various landscapes with different
high fitness value areas and same low areas generate similar data for walks and
consequently the obtained ruggedness measures are within the same range when
using previous methodologies. To address this issue, we introduce methods which
take into account the individual fitness values in the sampling process. Using this
method forces the algorithm to explore higher fitness values in landscape which
is more interesting for optimisation algorithms. Therefore, the calculated fitness
landscape ruggedness is more interesting as it reflects the landscape structure in
regions of the search space that are crucial for optimisation.
The chance of finding even a few feasible individuals when using random walk
algorithms is likely to be very low for highly infeasible landscapes. Since the
majority of constrained optimisation problems are nearly infeasible, it is more
likely to have more infeasible individuals when using a random walk to explore
the landscape. Optimisation algorithms prefer to move and search in feasible re-
gions. In order to solve this problem, the sampling method for exploring fitness
landscapes of constrained optimisation problems needs to move towards feasible
areas in the search space. Our remedy for this issue is that we introduce methods
that have the ability to distinguish between feasible and infeasible individuals
when choosing the next step in the walk. Our method is flexible and can be tuned
such that the walk contains more or less feasible individual in it.

3.2 Biased sampling using evolution strategies

We use a biased walk in our approach to quantify the ruggedness of a constrained
problem fitness landscape. Considering the fitness values of individuals in the



1. Initialize the strategy parameters, set generationCounter = 0
2. Initialize and create the population of solution of x using uniform n

dimensional probability distribution on problem search space (µ individuals)
3. Evaluate the fitness of population
4. Repeat
5. Generate offspring using Equation 3.2 and 3.2 (mutation)
6. Evaluate the fitness of offspring
7. Apply the selection process to select from offspring individuals for next

generation (selection).
8. generationCounter = generationCounter +1
9. Until stopping condition is true

Algorithm 3: (µ ,λ )-ES used as biased walking

sampling process improves the reliability of the calculated measure. Our biased
walk is using a simple evolution strategy [16]. Since the adjacent steps in the walk
should be different, we use a (µ ,λ )-ES. This means that the selection is performed
among the λ offspring and their parents are excluded from new generation.
In the (µ ,λ )-ES, each individual (both parents and offspring) is a vector (xi,σi)
consisting of the coordinates of the search point and the step sizes for the dif-
ferent coordinates. The initial population is generated by choosing µ solutions
uniformly at random from the search space and the initial step size of variable j
in individual i is given as:

σ
(0)
i, j =

∆xi, j√
n

in which σi, j refers to the jth component of vector σi and ∆xi, j is the difference
of upper and lower bounds on σi, j [16, p. 117]. It is noteworthy that the calculated
strategy parameters for each generation are used in the next generation. The step
sizes for each generation are as follows:

σ
′
i j(t +1) = σi j(t)eτ

′
N(0,1)+τN j(0,1)

where τ
′
= 1√

2n
and τ = 1√

2
√

n
are learning rates and N(0,1) is normally dis-

tributed random variable and N j(0,1) denotes that there is a new value for each
component of σ .
By calculating the next generation strategy parameters (as above), each parent
produces new individuals as:

x
′

h, j = xi, j(t)+N j(0,1)σ
′

h, j(t)

where h∈ {1, . . . ,λ} and i∈ {1, . . . ,µ} . The pseudo-code for (µ ,λ )-ES is shown
in Algorithm 3. In this chapter, we are using µ = 1, i.e. a (1,λ )-ES. This implies
that each search point in the sequence we are generating is an offspring of the
previous point in this sequence.



1. Initialize probability of Pf
2. I j= {1, . . . ,λ}
3. For i starts at 1, i< N, increment i
4. For j starts at 1, h< λ -1, increment j
5. Generate a random number (U) in the range of (0,1)
6. If (φ(I j) = φ(I j+1) = 0) or (U < Pf )
7. If f (I j) > f (I j+1)
8. swap(I j, I j+1)
9. End if

10. else
11. If φ(I j)> φ(I j+1)
12. swap(I j, I j+1)
13. End if
14. End if
15. End for
16. Break if no changes occurred within a complete sweep
17. End for

Algorithm 4: Stochastic ranking for dealing with infeasible areas. N is the num-
ber of sweeps needed for whole population, λ is the number of individuals which
are ranked by at least λ sweeps and φ is a real-valued function that imposes
penalty.

3.3 Dealing with infeasible areas

Among all categories of constraint handling methods, it has been shown that
penalty methods in general have a good performance [9]. Some methods calcu-
late the constraint violation as a sum of violation of all constraints and integrate
them into the objective function.
When integrating constraint violations into the objective function, the main prob-
lem is to choose an appropriate penalty coefficient that determines how strongly
the constraint violation influences the objective value. There are also penalty
methods which use the constraint violation and objective functions separately.
In this case, the optimise the constraint violation and objective function in lexi-
cographic order so that the main goal is to obtain a feasible solution.
As discussed earlier, to deal with nearly infeasible problems, there is a need to use
a walk with the ability to distinguish between feasible and infeasible individuals.
We choose the stochastic ranking method proposed by Runarsson [15] as our con-
straint handling mechanism to sample and collect individuals for the time series
S(ε). It has been observed that there should be a balance between accepting infea-
sible individuals and preserving feasible ones. Hence, neither over nor under pe-
nalising infeasible solution is a proper choice as constraint handling method [4].
It is worth noting that all penalty methods try to adjust the balance between the
objective and penalty function. The proposed stochastic ranking method adjusts
this balance in a direct way. By using this method, the walk is directed towards
feasible areas of the search space.
The stochastic ranking method is used to rank λ offspring in evolutionary strategy
we discussed earlier (see Algorithm 4). The ranking is achieved by comparing ad-
jacent individuals in at least λ sweeps. The ranking is terminated once no change
occurs during a whole sweep. To determine the balance of offspring selection, the



1. Parameter setting: Pf =0.4, MaxStepNumber=5000
2. Set counter=0 and create and array of steps to save the steps in the walk
3. Repeat
4. Produce new individuals by using evolutionary strategy (ES) in algorithm es
5. Rank generated offspring by employing stochastic ranking method in Algorithm 4
6. Save the highest ranking individual fitness (infeasible/feasible) in array

of steps[counter]
7. counter = counter +1
8. Until (counter < MaxStepNumber)
9. Set ε∗ = max(steps[])−min(steps[])

10. Generate ensemble of objects (Equation 4)
11. Calculate the entropic measure H(S(ε)) (Equation 5)

Algorithm 5: Ruggedness quantifying for constrained continues fitness landscape
problem

probability of Pf has been introduced in [15]. In other words, Pf is the probabil-
ity of comparing two adjacent individuals based on their objective function. It is
obvious, if two comparing individuals are feasible then Pf is 1.

3.4 Ruggedness quantifying method using constrained handling
biased walk

We already explained how we use a biased walk which can distinguish the feasi-
ble and infeasible individuals. In order to obtain more interesting individuals, we
need to use a biased walk that moves through good regions of the fitness land-
scape. It is necessary to have feasible solution within the walk steps in order to
obtain an effective ruggedness measure. Therefore, our approach uses a biased
walk by constraint handling methods which make it possible to have feasible
individuals in the path. In the algorithm, the individuals that are found by the
simple evolutionary strategy are ranked by the stochastic ranking method. After-
wards, the highest rank individual is selected for the step walk. The pseudo-code
of our methodology to quantify the ruggedness of constrained continuous fitness
landscapes is given in Algorithm 5.
As mentioned in the previous section, Pf controls the probability of compar-
ing two adjacent individual x and y based on their objective function. According
to [15], the probability of winning for x is given by

Pw = Pf ω Pf +Pφω (1−Pf ) (8)

where Pf ω is the probability that individual x is winning when x and y are com-
pared according to their objective function value and Pφω is the probability that x
wins when they are compared according to the penalty function.
As discussed in Section 3.1, the walking algorithm should consider both feasible
and infeasible areas. Thus, Pf determines whether the comparison is based on the
objective or the penalty function. Of course, the impact of this parameter setting
depends on the fitness landscape under investigation. By adjusting the parameter
Pf , we can control the number of feasible or infeasible individuals in the walk
and consequently the calculated ruggedness measure is more likely based on the
feasible or infeasible regions.



Fig. 1: Two dimensional constrained sphere function using the functions

4 Experimental studies

In this part, we describe experimental studies to evaluate our approach for mea-
suring the ruggedness of a constrained continuous fitness landscape. We carry out
experimental investigations on two different types of problems. The first consists
of a constrained version of the classical Sphere function. Imposing constraints
that lead to different infeasible areas, we examine our approach with respect to
the number of feasible solutions that are obtained during the run of the algorithm
and compare it to the other approaches outlined in Section 2.2. Then, we examine
our approach on different benchmark functions taken from the special session on
single objective constrained real parameter optimisation [9] at CEC 2010.

4.1 Constrained sphere function

In order to investigate the proposed method, we first consider the following con-
strained version of the 2 dimension classical Sphere function:

minSphere(x) =
n

∑
i=1

x2
i −5.12≤ xi ≤ 5.12

subject to g(x)≤ 0

where g(x) imposes the constraints of the 2 dimensional sphere function. We
construct 3 different problems that differ from each other by using each of the
following constraints:

– g1(x) = 10(∑n
i=1 |cos3(xi−40)|)−4,

– g2(x) = 10(∑n
i=1 |cos3(xi−40)|)−8,

– g3(x) = 10(∑n
i=1 |cos3(xi−40)|)−12

In this experiment different optimisation problems (Sphereg1 , Sphereg2 , Sphereg3 )
have low, medium and high feasibility rate. In this experiment, we consider 2 di-
mension sphere function to analyse the results more accurately. Figures 1,2 show
the feasible areas in these 3 functions (n = 2).



(a) (b)

(c)

Fig. 2: Two dimensional space of the constrained sphere functions with infeasible
areas marked white: (a) Sphereg1 , (b) Sphereg2 , (c) Sphereg3 having low, medium and

high infeasibility rate

Table 3: Percentage of feasible individuals in the walks
Sphereg1 Sphereg2 Sphereg3

Random increasing
walk

71.3 55.8 28.7

Biased walk 75.8 68.1 48.7

We apply and compare the random increasing walk (see Algorithm 2) with our
methodology on these problems with different feasibility rate. In this experiment,
we use (1,7)-ES algorithm and Pf = 0.4 that means the ES has a tendency to
focus on feasible solutions. We did 20 independent runs consisting of 1000 steps
each and for each problem the percentage of feasible solutions is represented in
Table 3.
Due to stochastic nature of an evolutionary optimisation, the above test is re-
peated 10 times and the two-tail t-test significance is performed. In all tests, the
significant level α is assigned as 0.05. The p-values for each function are repre-
sented in Table 4. The results shows that the difference of means are significant
and less than 0.05.

Clearly, our methodology is less influenced by increasing the infeasibility rate
of the problem. Also, comparing both walks shows that using our biased walk is
more likely to obtain feasible individuals (steps) in the walk see Table 3). The



Table 4: p-values for significance of a difference between two means for running
Random increasing and Biased walk over 3 functions.

Sphereg1 Sphereg2 Sphereg3

p-value 0.0043 7.0834E−06 9.4817E−06

Fig. 3: Standard deviation for average percentage of feasible individuals in walks using
Random increasing and Biased walks

standard deviation of feasible individuals in both walks are shown in Figure 3.
It is clear that the standard deviation of feasible individuals is higher for random
walks.
Thus, the obtained ruggedness measure is related to the feasible parts which is
more likely to be seen by the solver.

4.2 CEC benchmark problems

Also, we investigate our new method on benchmark problems from CEC 2010
competition [9]. First, we compare our method with random increasing walk in
terms of number of feasible individuals (steps) in the walk. In order to to this,
we use (1,7)-ES in this experiment and Pf is considered as 0.4 which forces the
walk towards feasible areas (see Equation 8). We calculate the number of feasible
steps (individuals) taken by the walking algorithm within 5000 steps for nearly
infeasible problems. Figure 4 shows the results of 30 independent runs on CEC



Fig. 4: Percentage of feasible individuals in walks for nearly infeasible CEC
benchmark problems

problems. It can be observed that for nearly infeasible problems [9], our method
performs better to include more feasible individual in the steps (see Figure 4).
Also, to test the ability of our methodology in ruggedness quantifying, we used
different CEC benchmark problems with D = 10. To quantify the ruggedness, we
calculate the entropic measure H(S(ε)) for different values of ε (Equation 7) .
Table 5 shows our experimental results. The results indicate the mean value of
H(S(ε))s for different values of εs over 30 runs. Based on [8], the ruggedness
feature of problem is considered as the maximum value of H(S(ε)) among all
different εs. These numbers are values describing the ruggedness of each prob-
lem fitness landscape with respect to neutrality. Also, the standard deviation for
different ε’s is shown in Table 6.
To interpret this table, it is convenient to classify the problems based on their
objective functions. Problems C17 and C18 are similar according to their objec-
tive functions and present close values for their ruggedness. For problems C03,
C07, C09 and C10 (with the same objective function), the ruggedness measure is
in the same range. C02 and C06 with the same objective function have different
ruggedness measures compared to C01 which has the largest value in ruggedness.
Therefore, it can be concluded that it is more likely that similar problems have
similar ruggedness measures. Based on the table, we can conclude that C01 is
more rugged than other categories.

5 Conclusions

In this chapter, we have reviewed the literature on measuring ruggedness of fitness
landscapes and discussed the drawbacks of the current methods when dealing
with constrained problems. In order to address constrained continuous optimisa-
tion problems, we have presented a new technique to quantify the ruggedness of



Table 5: Ruggedness results for functions in CEC 2010 benchmarks (10D). The values
for different ε’s are mean values in 30 independent runs.

Function
(10D)

ε∗ ε∗

2
ε∗

4
ε∗

8
ε∗

16
ε∗

32
ε∗

64
ε∗

128
ε∗

256 Ruggedness

C01 0 0.001 0.005 0.013 0.024 0.035 0.060 0.102 0.153 0.153
C02 0 0.001 0.003 0.004 0.006 0.010 0.015 0.023 0.035 0.035
C03 0 0.000 0.001 0.004 0.009 0.011 0.014 0.014 0.013 0.014
C06 0 0.006 0.010 0.012 0.014 0.018 0.023 0.035 0.027 0.027
C07 0 0.001 0.004 0.006 0.007 0.009 0.012 0.013 0.015 0.015
C09 0 0.001 0.002 0.003 0.005 0.006 0.009 0.012 0.014 0.014
C10 0 0.002 0.002 0.003 0.004 0.006 0.007 0.01 0.012 0.012
C17 0 0.002 0.003 0.005 0.008 0.013 0.015 0.011 0.019 0.019
C18 0 0.001 0.002 0.003 0.004 0.007 0.009 0.012 0.017 0.017

Table 6: Standard deviation values for different ε’s in 30 independent runs.
Function
(10D)

ε∗

STD

ε∗

2
STD

ε∗

4
STD

ε∗

8
STD

ε∗

16
STD

ε∗

32
STD

ε∗

64
STD

ε∗

128
STD

ε∗

256
STD

C01 0 0.002 0.005 0.006 0.009 0.0160 0.028 0.044 0.058
C02 0 0.002 0.003 0.003 0.005 0.008 0.0140 0.022 0.035
C03 0 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.009
C06 0 0.013 0.016 0.016 0.017 0.019 0.024 0.035 0.028
C07 0 0.001 0.002 0.003 0.004 0.006 0.007 0.009 0.009
C09 0 0.001 0.001 0.002 0.002 0.004 0.006 0.010 0.011
C10 0 0.001 0.001 0.002 0.003 0.004 0.005 0.007 0.009
C17 0 0.002 0.002 0.005 0.011 0.022 0.041 0.008 0.009
C18 0 0.001 0.001 0.002 0.002 0.004 0.004 0.006 0.010

constrained continuous problem landscapes. The modification is based on replac-
ing the random sampling data by a biased walk using a (1,λ )-evolution strategy
which can distinguish the feasible and infeasible individuals. We evaluated our
approach on different benchmark functions and have shown that it produces more
feasible solutions during its run. Furthermore, we evaluated our method on CEC
2010 benchmark problems and discussed the results.
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Appendix

The experimented benchmark functions described in [9] are summarised here. In
this experiment ε is considered as 0.0001.

C01

Minimize

f (x) =−
∣∣∣∣∑

D
i=1 cos4(zi)−2∏

D
i=1 cos2(zi)√

∑
D
i=1 iz2

i

∣∣∣∣ z = x−o

subject to

g1(x) = 0.75−∏
D
i=1 zi ≤ 0

g2(x) = ∑
D
i=1−0.75D≤ 0

x ∈ [0,10]D

C02

Minimize

f (x) = max(z) z = x−o,y = z−0.5

subject to

g1(x) = 10− 1
D ∑

D
i=1[z

2
i −10cos(2πzi)+10]≤ 0

g2(x) = 1
D ∑

D
i=1[z

2
i −10cos(2πzi)+10]−15≤ 0

h(x) = 1
D ∑

D
i=1[y

2
i −10cos(2πyi)+10]−20≤ 0

x ∈ [−5.12,5.12]D

C03

Minimize

f (x) = ∑
D−1
i=1 (100(z2

i − zi+1)
2 +(zi−1)2) z = x−o



subject to

h(x) = ∑
D−1
i=1 (zi− zi+1)

2 = 0

x ∈ [−1000,1000]D

C06

Minimize

f (x)=max(z) z= x−o,y=(x+483.6106156535−o)M−
483.6106156535

subject to

h1(x) = 1
D ∑

D
i=1(−yi sin(

√
|yi|)) = 0

h2(x) = 1
D ∑

D
i=1(−yi cos(0.5

√
|yi|)) = 0

x ∈ [−600,600]D

C07

Minimize

f (x) = ∑
D−1
i=1 (100(z2

i −zi+1)
2+(zi−1)2) z = x+1−o,y =

x−o

subject to

g(x)= 0.5−exp(−0.1
√

1
D ∑

D
i=1 y2

i )−3exp( 1
D ∑

D
i=1 cos(0.1y))+

exp(1)≤ 0

x ∈ [−140,140]D

C09

Minimize



f (x) = ∑
D−1
i=1 (100(z2

i −zi+1)
2+(zi−1)2) z = x+1−o,y =

x−o

subject to

h1(x) = ∑
D
i=1(yi sin(

√
|yi|)) = 0

x ∈ [−500,500]D

C10

Minimize

f (x) = ∑
D−1
i=1 (100(z2

i −zi+1)
2+(zi−1)2) z = x+1−o,y =

(x−o)M

subject to

h1(x) = ∑
D
i=1(yi sin(

√
|yi|)) = 0

x ∈ [−500,500]D

C17

Minimize

f (x) = ∑
D
i=1(zi− zi+1)

2 z = x−o

subject to

g1(x) = ∏
D
i=1 zi ≤ 0

g2(x) = ∑
D
i=1 zi ≤ 0

h(x) = ∑
D
i=1(zi sin(4

√
|zi|)) = 0

x ∈ [−10,10]D



C18

Minimize

f (x) = ∑
D
i=1(zi− zi+1)

2 z = x−o

subject to

g(x) = ∑
D
i=1(−zi sin(

√
|zi|))≤ 0

h(x) = ∑
D
i=1(zi sin(

√
|zi|)) = 0

x ∈ [−50,50]D


