Feature-Based Algorithm Selection for Constrained
Continuous Optimisation

Shayan Poursoltan
Optimisation and Logistics
School of Computer Science
The University of Adelaide
Adelaide, SA 5005, Australia

Abstract—With this paper, we contribute to the growing
research area of feature-based analysis of bio-inspired computing.
In this research area, problem instances are classified according
to different features of the underlying problem in terms of their
difficulty of being solved by a particular algorithm. We investigate
the impact of different sets of evolved instances for building
prediction models in the area of algorithm selection. Building
on the work of Poursoltan and Neumann [1], [2], we consider
how evolved instances can be used to predict the best performing
algorithm for constrained continuous optimisation from a set
of bio-inspired computing methods, namely high performing
variants of differential evolution, particle swarm optimization,
and evolution strategies. Our experimental results show that
instances evolved with a multi-objective approach in combination
with random instances of the underlying problem allow to build
a model that accurately predicts the best performing algorithm
for a wide range of problem instances.

Keywords: Constraints, Continuous Optimisation, Difficulty
Prediction, Linear Constraints, Features

I. INTRODUCTION

Throughout the history of heuristic optimisation, various
methods have been proposed to solve constrained optimisation
problems (COPs), especially non-linear ones. The main idea
behind these algorithms is to tackle the constraints. Important
approaches in this area are differential evolution (DE), particle
swarm optimisation (PSO) and evolutionary strategies (ES).
To handle the constraints, there have been many techniques
applied to these algorithms such as penalty functions, special
operators (separating the constraint and objective function
treatment) and decoder based methods. We refer the reader
to [3] for a survey of constraint handling techniques in evolu-
tionary computation. Given a range of different algorithms for
constrained continuous optimisation, we consider the algorithm
selection problem (ASP) [4] which consists of selecting the
best performing algorithm from a suite of algorithms for a
given problem instance. In most circumstances, it is difficult to
answer the following question: ”Can we estimate the likelihood
that algorithm A will be successful on a given constrained
optimisation problem instance /?”. Recent works in the field
show that it is possible to select the algorithm most likely
to be best suited for a given problem instance [5], [6], [7].
Based on these studies, it is possible to find the links between
problem characteristics and algorithm performance. The key to

Frank Neumann
Optimisation and Logistics
School of Computer Science
The University of Adelaide
Adelaide, SA 5005, Australia

these investigations are problem features which can be used to
predict the most suitable algorithm from a set of algorithms.

It is widely assumed that constraints play a vital role in
COP’s difficulty. Therefore, in this study we use the meta-
learning framework outlined in [4], [8] to build a prediction
model for a given COP. Our model predicts the best algorithm
type (DE, ES and PSO) for a given COP based on their
constraint features. The model inputs include the features of
constraints of a given problem instance. It is shown in [1], [9]
that by using an evolving approach, it is possible to generate
problem instances covering a wide range of problem/algorithm
difficulty. Such instances can be used to extract and analyse
the features that make a problem hard or easy to solve for a
given algorithm. For a detailed discussion on these constraints
(linear, quadratic and their combination) we refer the reader
to [1].

To build a reliable prediction model, we need to train it
with variety of problem instances that are hard or easy for al-
gorithm(s). Based on the investigations in [2], a multi-objective
evolutionary algorithm can be used to generate constrained
problem instances that are hard/easy for one algorithm but still
easy/hard for the others. The authors show which features of
the constraints make the problems hard for certain algorithm
but still easy for the others. Hence, we use the same approach
to generate problem instances to use in our model training
phase. This can improve the accuracy of prediction model
since the training instances are used to show the strengths
and weaknesses of various algorithm types over constraint
features. To illustrate the model’s efficiency on constraints, we
examine our model with generated testing problem instances
such as hard/easy for one but easy/hard for the others and more
general random instances. To show the model prediction ability
over constraints (linear, quadratic and their combination), we
experiment with problems having different objective functions.

The remainder of this paper is organised as follows: In Sec-
tion II, we formally introduce constrained continuous optimisa-
tion problems and describe the the evolutionary algorithms that
are used in our investigations. Moreover, background material
related to the multi-objective evolver, the algorithm selection
problem and meta-learning prediction models is provided
Section III describes and compares all models trained with
different subsets of instances from a multi-objective evolver.
By choosing the best training data preference in Section III,
the experimental analysis on various benchmark problems is
described in Section IV. We then conclude with some remarks

in Section V.

II. PRELIMINARIES

A. Constrained Continuous Optimisation Problems

A constrained optimisation problem (COP) in the contin-
uous space where the objective function should be minimized
can be formulated as follows:

minimise f(x), x=(x1,...,x,) ER"
subject to g;(x) <0 Vie{l,...,q} (1)
hi(x) =0 Vje{q+1,...,p}

In this formulation, f, g; and h; are real-valued functions
on the search space S =", ¢ is the number of inequalities and
p —q is the number of equalities. These equality and inequality
constraints could be linear or nonlinear. The feasible region
F C S of the search space S is defined by

I <x; <u, 1<i<n

where both /; and u; are lower and upper bounds for the
ith variable, 1 <i < n. To simplify working with COPs, the
equalities are replaced by the following inequalities:

lhj(x)| <& for j=q+1to p 2)

where € is a small positive value. In all experiments, we use
€ = 1E~* which is the same setting as for the CEC 2010
competition [10].

B. Algorithms

In this section, we discuss the basic ideas about algorithms
for constrained optimisation problems such as differential evo-
lution, evolutionary strategies and particle swarm optimisation.

The e-constrained differential evolution with an archive and
gradient-based mutation (¢DEag) is the winner of 2010 CEC
competition for continuous constrained optimisation problems
[10]. This algorithm uses the &-constrained method to trans-
form algorithms for unconstrained problems to constrained
ones. Potential solutions are ordered by e-level comparison.
This means, the lexicographic order is used in which constraint
violation has priority over the function value. A detailed
description of this algorithm can be found in [11].

In the case of evolutionary strategies, (1+1) CMA-ES for
constrained optimisation [12] is included in our experiment.
This algorithm is a variant of (1+ 1)-ES which adapts the
covariance matrix of its offspring distribution in addition to
its global step size. The (1 +1) CMA-ES for constrained
optimisation obtains approximations to the normal vectors
directions in the vicinity of the current solution locations by
applying low-pass filtering to steps that violate the constraints
and reduces the variance of the offspring distribution in these
directions. Adopting this method makes (1+ 1) CMA-ES one
of the most efficient algorithms for constrained optimisation
problems. We refer the reader to [12] for detailed description.

The algorithm that is used in our investigations from the
area of particle swarm optimisation is hybrid multi-swarm
particle swarm optimisation (HMPSO). This algorithm divides
the current swarms into sub-swarms and searches solutions
between them in parallel. Particles in each sub-swarm locate
their fittest local particle which attracts the particles to fitter
positions. Having multiple sub-swarms near different optima
increases the diversity of the algorithm. A detailed description
of HMPSO can be found in [13].

C. Multi-objective Investigations

In order to extract information about the strengths and
weaknesses of certain algorithms on constrained optimisation
problems, we consider problem instances with different kinds
of difficulties for the considered algorithms. To do this, we
evolve instances that are hard/easy for one algorithm and
easy/hard for the others. Analysing the features of these
instances helps us to extract knowledge regarding the strengths
and weaknesses of the considered algorithms and gives reasons
of why an algorithm performs well on one problem instance
while the others have difficulties. Insights from such analyses
can be used to develop more efficient prediction model for
automated algorithm selection.

We use a multi-objective DE algorithm (evolver) [14] to
evolve constraints that make problem instances hard for one
algorithm and easy for the others following the approach
outlined in [1], [2]. The authors of these articles show the
constraint (linear and/or quadratic and their combination) fea-
tures that are significantly contributing to problem difficulty
for certain algorithms. We refer the reader to [1], [2] for a
detailed description.

D. Algorithm Selection Problem

It is difficult to understand which algorithms or types
of algorithms are more efficient to solve a given COP. The
problem of determining the best algorithm to solve a given
problem instance is referred to as the “Algorithm Selection
Problem” (see Rice [4]). In his work, Rice proposed a model
with four main characteristics: a set of problem instances F,
a set of algorithms A, measures for the cost of performing
algorithms on particular problem (Y), and a set of charac-
teristics of problem instances (C). The illustration for Rice
general algorithm selection framework is shown in Figure 1
which predicts the performance y(a(f)) of a given algorithm
a on a problem f by extracted features c. The idea is to
extract features from a given problem instance and select
the most appropriate algorithm or predict the performance of
the algorithm based on these features. This framework has
been extended by [8], [15], [16] in a variety of computational
problem domains using meta-learning framework. So, if the
values are features of problems with algorithm performance
measure are known beforehand, then it is possible to use a
learning strategy to predict the algorithm performance based
on the problem features.

E. Prediction Model

Our prediction model is implemented based on the work
of Munoz et al. [5]. This approach has originally been
proposed for unconstrained continuous optimisation problems

Problem
Space

Feature Space

Feature Extraction

L.
- ceC
feF
Algorithmj
Selection
based on
(—.\ Problem
. Features
Algorithm <
L Space
~ Apply
algorithmto aEn —
problemto _) Perfqmjance
measure Predicti
performance based on
Problem
Feat
Performance
- Space
- s
)
VEY
| —

Fig. 1: The framework of general problem of algorithm
selection and performance prediction using problem features
based on [4].

using landscapes features. In our study, inputs are problem
constraint features and algorithm parameters. The output is
predicted required function evaluation number (FEN) to solve
the problem. This model can be used to predict the algorithm
behaviour on a given problem instance. To achieve this we
use popular basic technique for model building used in [5].
A high-level overview of the used prediction model is shown
in Figure 2.

There have been many attempts to train these prediction
models with random generated or benchmark problem in-
stances which could not fully include all problem instances
with difficulty variations. To improve this, we cover a wider
spectrum of difficulty by evolving two sets of instances
with extreme problem difficulties. These extreme difficulty
instances are the ones which are hard for one algorithm and
easy for the others or easy for one and still hard for the rest.

To build our regression model, we are using the same
approach as [5]. This model is a multi-layered feed-forward
neural network with 2 hidden layers and 10 neurons in
each layer. For training the model, we use a Levenberg-
Marquardt back-propagation algorithm [17] package using
Matlab R2014b. To train this model, we use evolved instances
that are generated from multi-objective evolver in [2]. The
prediction model inputs are given COPs constraint features
and algorithm parameter values.

III. PREDICTION MODEL BASED ON EVOLVED INSTANCES

Our goal is to introduce a reliable prediction model using
constraint features. The reliability can be improved by choos-
ing proper set of learning data. The accuracy of this prediction
model depends on many factors such as the relevance of
constraint features, the diversity of instances used to train
the model and its training method. Therefore, we train our
prediction model on instances obtained from multi-objective
evolver described in [2]. These instances are hard for one

Cy >
Constraint Features { :
Cy > Hardness
Model
—

o g(c.8) Performance

—_—D>

Algorithm Parameters [:1 Measure ¥ (FEN)

eﬂ é

Inputs Qutputs

Fig. 2: Meta-learning prediction model for a constrained
continuous optimisation problem

algorithm but still easy for the other (or easy for one and
hard for the other algorithms).

The prediction model uses constraint features to predict
the best algorithm type for a given constrained optimisation
problem. These constraint features are constraint coefficients
relationships such as standard deviation, angle between con-
straint hyperplanes, feasibility ratio in vicinity of optimum and
number of constraints. The details of these features are dis-
cussed in [1]. For algorithm parameters, we use the parameter
settings for DE, CMA-ES and HMPSO given in [11], [13],
[12].

Our goal of building a prediction model is to identify the
best algorithm type for a given problem. Therefore, the model
output predicts the most suited algorithm and required FEN to
solve a given constrained problem. The suggested FENs denote
numbers of function evaluation which are needed by different
algorithms to solve a given COP.

In the following we train our prediction model with variety
of instance subsets generated by the multi-objective evolver.
We choose different combinations of subsets of instances
to maximise our prediction model accuracy upon a given
constrained problem. In the different training phases instance
subsets are selected from extreme points, Pareto optimal
instances, randomly generated instances and a combination
of Pareto optimal instances and random points from multi-
objective evolver solution population in [2]. We then compare
the prediction accuracy of the different prediction models.
For all experiments in Section III, we generate 30 problem
instances that are hard/easy for one algorithm type but still
easy/hard for the others. We then run our experimented pre-
diction models on each of these problem instances to find the
suggested algorithm type and their required FEN.

A. Extreme Instances

We first train our prediction model with an extreme instance
subset which covers the extreme points of the Pareto front
in the multi-objective evolver population set. These extreme
solutions are selected from evolved instances that are easi-
est/hardest for one and hardest/easiest for the other algorithms
at the same time.

TABLE I: Comparison of prediction models extreme (EP-PM), Pareto front (PF-PM), random only (RO-PM) and
Pareto+random points (PFR-PM). Instances are hard/easy for the algorithm named in the first column and easy/hard for the
others. For example, DE hard (1 c) in the first line are problem instances with 1 constraint that are hard/easy for DE algorithm

but easy/hard for the others. The last 20 instances are random instances with different numbers of constraints.

Problem Correct algo- | EP-PM PF-PM RO-PM PFR-PM EP-PM PF-PM RO-PM PFR-PM
rithm / FEN predicted predicted predicted predicted average average average average
algorithm /| algorithm / | algorithm / | algorithm / | deviation deviation deviation deviation
FEN FEN FEN FEN of FEN of FEN of FEN of FEN

DE hard (1 ¢) ES / 41.5K ES /43.7K ES /43.5K PSO/ 38.1K ES / 40.2K 2.9K 3.2K 8.1K 2.1K
ES hard (1 ¢) DE / 45.7K PSO/ 41.6K PSO/ 40.3K DE / 51.8K DE / 43.6K 4.1K 4.5K 5.8K 3.1K
PSO hard (1¢) | DE/37.2K DE / 38.9K DE / 35.1K PSO/ 57.3K DE / 39.1K 2.3K 2.2K 25.3K 1.5K
DE hard (2 ¢) ES /452K ES / 42.5K ES / 43.1K ES / 57.9K PSO/ 41.9K 2.6K 2.0K 20.8K 1.9K
ES hard (2 ¢) DE / 46.4K DE / 47.2K DE / 48.5K PSO/ 53.7K DE / 45.8K 2.4K 1.6K 14.3K 1.9K
PSO hard 2 ¢) | DE / 43.6K DE / 41.5K DE / 42.3K DE / 55.7K DE / 41.8K 1.8K 1.6K 15.3K 2.2K
DE hard (3 ¢) ES /452K ES /43.1K ES /429K PSO/ 57.3K ES / 43.8K 2.7K 27K 14/3K 2.6K
ES hard (3 ¢) PSO/ 48.2K PSO/ 43.5K DE / 49.3K DE / 62.7K PSO/ 42.9K 4.8K 2.5K 15.0K 4.6K
PSO hard 3¢) | DE / 49.6K DE / 47.2K DE / 47.5K ES /43.2K DE / 46.8K 2.4K 2.6K 11.3K 3.0K
DE hard (4 ¢) ES / 47.2K PSO/ 49.2K ES /49.2K PSO/ 49.1K ES / 49.2K 2.5K 2.2K 3.5K 1.8K
ES hard (4 ¢) PSO/ 48.9K PSO/ 46.3K PSO/45.1K DE / 39.8K PSO/ 46.8K 2.8K 3.0K 8.1K 2.5K
PSO hard (4 ¢) | ES/50.8K DE / 49.2K ES / 51.9K DE / 63.9K ES /50.3K 2.6K 1.9K 9.5K 2.6K
DE hard (5 ¢) ES / 53.3K ES /49.3K ES /559K PSO/ 49.2K ES/ 52.4K 2.4K 2.6K 7.1K 2.1K
ES hard (5 ¢) DE / 53.8K DE / 51.4K DE / 51.9K PSO/ 47.1K DE / 52.5K 2.1K 2.0K 7.1K 1.2K
PSO hard (5¢) | DE /51.3K DE / 49.1K ES /53.1K ES /452K DE / 50.2K 2.8K 3.1K 9.7K 1.6K
DE easy (1 ¢) DE / 48.9K DE / 453K PSO/ 71.2K DE / 41.2K DE / 46.4K 3.6K 12.0K 8.8K 2.6K
ES easy (1 c) ES / 547K ES /483K ES / 47.2K ES / 642K ES / 48.2K 4.8K 4.4K 10.5K 4.4K
PSO easy (1 ¢c) | PSO/ 41.9K PSO/ 48.2K PSO/ 45.8K ES / 62.1K PSO/ 45.7K 4.8K 3.9K 15.9K 2.1K
DE easy (2 ¢) DE / 44.5K DE / 49.4K DE / 48.1K DE / 542K DE / 48.1K 4.6K 3.3K 11.5K 3.3K
ES easy (2 ¢) ES /553K ES /51.4K ES / 52.9K PSO/ 65.1K ES /523K 3.1K 2.8K 12.0K 3.6K
PSO easy (2¢) | PSO /49.4K PSO/ 51.6K PSO/ 47.1K PSO/ 58.1K PSO/ 48.1K 3.5K 3.0K 10.6K 2.8K
DE easy (3 ¢) DE / 48.4K DE / 41.8K DE / 42.4K DE / 59.1K DE / 42.5K 4.0K 4.1K 8.6K 3.8K
ES easy (3 ¢) ES / 46.2K ES / 48.2K ES / 479K PSO/ 42.4K ES/ 46.9K 2.9K 2.2K 9.5K 2.3K
PSO easy 3¢) | PSO/ 49.1K PSO/ 46.8K PSO/ 47.0K PSO/ 58.2K PSO/ 47.9K 3.1K 37K 13.4K 2.9K
DE easy (4 ¢) DE / 53.2K DE / 50.6K DE / 50.8K DE / 64.2K DE / 51.8K 1.8K 2.6K 8.1K 2.2K
ES easy (4 c) ES / 48.9K ES /51.2K ES /46.2K ES /59.1K ES / 50.8K 2.8K 2.9K 8.6K 2.0K
PSO easy (4¢) | DE /555K PSO/ 54.2K PSO/ 58.5K PSO/ 60.4K DE / 55.2K 8.2K 6.4K 6.9K 6.2K
DE easy (5 ¢) DE / 57.8K DE / 59.2K DE / 56.7K PSO/ 70.9K DE / 55.9K 1.2K 1.8K 9.3K 1.6K
ES easy (5 ¢) ES / 55.7K ES /53.2K ES /52.8K ES / 62.3K ES /563K 3.7K 39K 4.6K 2.6K
PSO easy (5¢) | PSO/ 57.6K PSO/ 55.8K PSO/ 56.1K PSO/ 64.3K PSO/ 56.2K 1.7K 2.2K 6.3K 1.2K
Rnd. 1 (1 ¢) PSO/53.2K DE / 53.2K PSO/ 48.8K PSO/ 50.9K PSO/ 51.7K 10.0K 4.2K 4.8K 1.7K
Rnd. 2 (1 ¢) DE / 61.9K ES / 43.5K DE / 67.3K DE / 552K DE / 64.4K 16.4K 5.1K 4.8K 1.2K
Rnd. 3 (2 ¢) DE / 59.8K ES / 48.1K DE / 51.5K DE / 49.2K DE / 55.0K 12.7K 6.4K 7.2K 3.4K
Rnd. 4 (2 ¢) ES / 59.4K PSO/ 55.3K ES / 64.1K ES / 63.2K ES / 61.4K 12.1K 5.9K 6.0K 2.9K
Rnd. 5 (3 ¢) DE / 65.4K DE / 45.2K ES / 57.1K ES / 63.5K DE / 61.9K 13.5K 5.8K 3.9K 3.6K
Rnd. 6 (3 ¢) PSO/ 61.4K ES / 45.6K PSO/ 55.1K PSO/ 56.8K PSO/ 57.8K 18.1K 7.6K 8.4K 4.0K
Rnd. 7 (4 ¢) ES / 65.8K DE / 71.6K ES / 71.3K PSO/ 71.2K ES / 69.4K 12.1K 5.5K 6.7K 3.6K
Rnd. 8 (4 ¢) DE / 71.1K PSO/ 62.7K ES /70.5K ES / 68.3K ES /73.7K 11.5K 6.8K 6.6K 11.6K
Rnd. 9 (5 ¢) DE / 82.7K ES / 83.9K DE / 87.9K DE / 88.3K DE / 84.2K 9.1K 5.4K 5.2K 3.6K
Rnd. 10 (5 ¢) PSO/ 68.4K DE / 78.4K PSO/ 75.6K PSO/ 75.3K PSO/ 65.8K 15.3K 8.4K 8.4K 5.7K
Rnd. 11 (6 ¢) DE / 44.6K ES /49.3K DE / 51.2K ES /52.4K DE / 48.5K 9.8K 6.9K 8.3K 2.5K
Rnd. 12 (6 ¢) DE / 45.2K ES / 48.2K DE/ 49.2K DE / 50.2K DE / 48.7K 9.3K 5.9K 6.5K 4.8K
Rnd. 13 (7 ¢) PSO/ 59.1K DE / 48.2K PSO/ 52.7K PSO/ 49.2K PSO/ 54.9K 11.8K 6.0K 6.5K 3.7K
Rnd. 14 (7 ¢) PSO/ 63.4K ES / 61.2K PSO/ 59.6K PSO/ 57.9K PSO/ 61.7K 10.2K 6.4K 7.0K 4.5K
Rnd. 15 (8 ¢) PSO/ 65.3K DE / 63.4K ES /59.9K ES /55.2K ES / 62.7K 8.1K 10.2K 12.0K 7.3K
Rnd. 16 (8 ¢) DE / 69.2K PSO/ 74.3K DE / 63.1K DE / 61.2K DE / 66.5K 8.2K 6.9K 6.8K 4.4K
Rnd. 17 (9 ¢) ES / 759K ES / 68.5K ES / 68.4K ES / 65.2K ES /703K 6.5K 6.2K 8.3K 49K
Rnd. 18 (9 ¢) PSO/ 68.3K DE / 71.4K PSO/ 72.6K PSO/ 70.2K PSO/ 71.2K 7.9K 6.8K 5.5K 4.2K
Rnd. 19 (10 ¢) | ES /91.2K DE / 81.2K DE / 85.1K DE / 83.1K ES / 86.9K 9.8K 5.7K 7.1K 37K
Rnd. 20 (10 ¢) | PSO/ 87.3K PSO/ 78.2K PSO/ 82.5K PSO/ 83.5K PSO/ 85.9K 10.2K 5.3K 5.9K 2.6K

To determine the actual accuracy of our extreme point
prediction model (EP-PM), we select 1500 extreme instances.
To analyse and test the quality of this prediction model, we
use two sets of testing problem instances that we already know
their best algorithm and required FEN. The first one is the set
of problem instances that are hard/easy for one algorithm but
easy/hard for the others. This set can improve the accuracy of
EP-PM for given problems that fall into extreme-like evolved
problem instances. However, it is very likely that the real world
given COP is similar to other evolved instance subset types.
Therefore, as a second set, we use random (general) testing

problem instances to analyse the EP-PM with a potential real
world given problem. We need to mention that we already
know about their best algorithm and required FEN.

Our results for EP-PM are summarised in Table I for
instances that are hard/easy for one and easy/hard for the other
algorithms. Also, the results for testing random instances are
shown in this table. Moreover, DE hard (1 c) denotes testing
Sphere problem instances with 1 linear constraint that are hard
for DE algorithm but still easy for the others. The information
about actual correct algorithm and required FEN to solve a
problem instance is indicated. The model not only suggests

the best algorithm with its required FEN but also predicts the
FENSs required to solve a given problem with other algorithms
(not the best ones). Then, to compare various models in depth,
we include the information about the average of all various
algorithm FENs deviations from their actual ones.

Based on the results, EP-PM performs acceptable on
extreme-like testing instances. This performance is acceptable
on predicted best algorithm type and FEN along with average
value for FENs deviation for other algorithms. But, the model
is not capable of predicting algorithm and required FEN for
testing random (more general) instances. This means, the
proposed model (EP-PM) is not accurate enough for randomly
generated real world instances and the difference between
predicted and actual FEN is considerable. Also, the average
deviation of required FEN for other algorithm is high and not
accurate.

To summarize, although the EP-PM model performs fairly
accurate on instances that are grouped into extreme points
evolved instances, still needs improvement to handle other
subsets (such as random generated instances). The likelihood
of given COP which is more similar to random evolved
instances are higher. Thus, this motivates us to examine other
subsets from evolving algorithm population instances for our
training phase. This could be moving along the Pareto front
line and choosing more instances from this category.

B. Pareto Front Instances

We now show that in order to improve the accuracy of our
prediction model, we can include different varieties of evolved
instance subsets for its training step. The idea behind this
choice is to obtain a model that can predict more general forms
of given constrained problems. Of course it is vital to predict
best algorithm for a given problem which is considerably
hard/easy for one and still easy/hard for the other algorithms,
but we also need to include more forms of generality to our
prediction model. So, we need to move along Pareto front
line in multi-objective evolver population set for our learning
phase. This could increase the ability of our model to predict
algorithms for more general given COP which is not similar
to extreme point instances.

Given a total number of 3000 instances from evolver Pareto
front line, we train our Pareto front prediction model (PF-
PM). This preference could increase PF-PM ability to predict
more general forms of given COPs. To compare the quality of
our prediction model and other models with different learning
phases, we use same extreme and random generated testing
instances used in previous section. The results shown in Table
I indicate an improving accuracy for random testing instances
used for previous model EP-PM (using extreme instances).
Looking at the Table I, we see that moving towards Pareto front
line in evolver population set for choosing learning instances
increases the accuracy of predicted FEN for predicted (best)
algorithm. Also, the average deviations of FEN for all other
algorithms indicate the PF-PM is more accurate than EP-PM
for testing random instances. This improvement is acceptable
in algorithm type prediction but we still need to improve the
predicted required FEN.

The Pareto front prediction model (PF-PM) has some
strengths and weaknesses. Although its error rate for predicting

correct algorithms is improved, there is still considerable
difference between the actual required FENs and predicted
ones. As testing instances are selected mostly from more
general instances (not close to extreme points), we need to
experiment other training instances subsets. In order to address
more general form, based on results so far, our next move is to
choose more random instances from evolver population set for
our training set. This could result in increasing the accuracy
of our model for more general forms of given COPs.

C. Random Instances

The initial prediction models discussed earlier (EP-PM and
PF-PM) have some limitations. The results for PF-PM show
an increase in accuracy of prediction for testing COPs which
are not similar to extreme points, but the predicted required
FEN still needs an improvement. Our goal is to design a
prediction model with an ability to predict all possible given
COPs. These COPs are within the range of extreme to random
like instances. Based on previous results, it is shown that
moving from extreme to Pareto front line instances increases
the model accuracy (see Section III-B). Hence, to decrease the
error rate for required FEN for more general testing COPs we
choose only random instances for testing phase. These random
instances are selected from evolver population set.

We use 3000 random instances from multi-objective
evovler population set for our random only prediction model
(RO-PM). To assess the accuracy of our random only predic-
tion model we use the same testing instances applied to EP-PM
and PF-PM. Table I indicates the actual and predicted FEN and
algorithm of hard/easy and random testing instances for RO-
PM. As it is observed, the random only prediction model (RO-
PM) fails to predict suitable algorithm for a given COP. This
failure include both predicted algorithm and required FEN.
Results show that moving through random instances in evolver
population and choose only random instances increase the
number of incorrect predictions. Also, comparing to previous
models, RO-PM accuracy is decreased for testing instances
similar to extreme points (easy/hard instances).

It is shown that the accuracy of resulting model with Pareto
front instances (PF-PM) is improved by selecting different sub-
sets (Pareto front line) than extreme points. This improvement
is analysed by experimenting more general form of testing
COPs. Therefore, this motivated us to experiment only random
solutions in order to build more accurate prediction model for
given COPs. By selecting only random instances to train the
new model, it is observed the predicted algorithm and required
FEN is not accurate as Pareto front (PF-PM) and extreme
points (EP-PM) models. It can be translated as excluding
instances from Pareto front line for training step decreases
the accuracy of prediction model. Also, the RO-PM model
failed to predict testing instances which are similar to evolver
extreme points (easy/hard instances). So, other possibility is to
use a combination of both Pareto front and random instances
from evolver population for model training.

D. Pareto Front with Random Instances

We already considered three types of prediction models
(EP-PM, PF-PM and RO-PM). These models have different
prediction accuracy upon choosing different varies of evolver

subsets for their training phases. Our goal of building a
prediction model is to minimise its error rate in both algorithm
and required FEN. So far, we understand that moving from
extreme points (EP-PM) to Pareto front (PF-PM) for training
step increases the accuracy of prediction model. However,
moving further and choosing only random points from evolver
(RO-PM) is not the solution for covering all possible given
COPs (extreme and random like instances). In other words,
there should be a trade-off relation between moving towards
random points from extreme and random instances in multi-
objective evolver population. Therefore, our preference for
training phase is a combination set of Pareto front and random
instances from multi-objective evolver. Not only it covers
instances that are hard/easy for one and easy/hard for the other
algorithms, but also it can predict general given COPs more
accurately.

To train our Pareto front with random instances prediction
model (PFR-PM), we use 3000 points from evolver population
set (1500 each). To compare and assess the prediction model
accuracy we experiment our PFR-PM with the same testing
COPs for the former models. The results for Pareto front and
random prediction model (PFR-PM) are shown in Table L. It is
observed that including both Pareto front line and random only
instances can be effective in accuracy improvement. Analysing
the results, it is obvious the error rate for both predicted
algorithm and required FEN are decreased. Also, the model is
able to predict required FEN using other algorithms (not the
best one) more accurate. This can be concluded using lower
average deviation of FENs for PFR-PM. The reason behind
this is that to cover all possible given COPs, we use both
Pareto front and random points from evolver population for
out training phase. In other words, our model is trained with
constraint characteristics and features of both types of COPs
(Pareto front and random instances).

It is shown that choosing the proper subsets for training
phase is effective in prediction model accuracy. The results
for four prediction models suggest that moving from extreme
points to random instances can improve the quality of predic-
tion model. It is found that there is a trade-off relationship in
choosing instances that are close to random or extreme points
(from evolver) for training phase. Results analysis shows by
selecting a combination subsets from both random and Pareto
front instances (PFR-PM) for training step, we can improve our
model prediction quality. This improvement is in both selected
algorithm and also its required FEN. By selecting the best
model (PFR-PM), in the following, we examine it in a more
detailed approach.

IV. EXPERIMENTS ON BENCHMARKS

Our goal is to design highly accurate prediction model for
a given COP based on its constraint features. As mentioned
earlier, in order to improve the model accuracy, it needs
to be trained with COP instances that are generated using
multi-objective evolver. So far, we analysed the results for all
four types of prediction models trained with extreme points
(EP-PM), Pareto front (PF-PM), random only (RO-PM) and
combination of Pareto front with random (PFR-PM) instances.
We have experimented our prediction model with various
subsets of training data to analyse the best preference. As

TABLE II: Comparison of PFR-PM with RO-PM models for
Sphere function with various types of constraints (linear (L),
quadratic (Q) and their combination). Average deviation of
FEN denotes the average of differences between actual and
predicted required FEN for PFR-PM and RO-PM.

Problem Success| Success Average Average p-

rate rate deviation deviation value

RO- FR-PM of FEN for | of FEN

PM RO-PM for PFR-

PM

Sphere, 1L 2 26 7.8K 2.4K 0.004
Sphere, 2L 1 27 8.6K 1.8K 0.013
Sphere, 3L 1 26 12.6K 3.2K 0.018
Sphere, 4L 5 28 13.6K 3.5K 0.006
Sphere, 5L 1 28 17.4K 2.7K 0.028
Sphere, 1Q 1 27 11.9K 2.1K 0.035
Sphere, 2Q 1 26 13.4K 2.6K 0.038
Sphere, 3Q 3 28 15.8K 37K 0.043
Sphere, 4Q 1 29 19.3K 3.1K 0.026
Sphere, 5Q 5 28 21.6K 43K 0.035
Sphere, 4L, 1Q 2 24 13.4K 2.5K 0.007
Sphere, 3L, 2Q 2 26 13.8K 2.8K 0.004
Sphere, 2L, 3Q 3 28 16.1K 3.8K 0.031
Sphere, 1L, 4Q 5 27 18.9K 3.7K 0.016

results indicate, the most accurate prediction model is the
one which is trained with combination of Pareto front and
random subset of evolver population (PFR-PM). This model
is capable of predicting algorithms for almost all possible given
testing COPs such as the ones similar to extreme (hard/easy)
or ordinary instances (random) in a multi-objective evolver
population. Also, the prediction ability for required function
evaluation number (FEN) has been significantly increased.
Therefore, in order to assess our optimised prediction model
(see Section III-D), we decide to experiment it with our newly
designed benchmark. In order to analyse the capability of
the prediction model (PFR-PM) on constraints, we use fixed
objective function with various numbers of linear, quadratic
(and their combination) constraints. Then, we test other well-
known objective function to see the relationship of constraints
and our prediction model.

For this experiment, we train our PFR-PM with 3000
instances from both Pareto front and random instances of
evolving algorithm population set (1500 each). We also use
optimised algorithm parameter settings for each algorithm
suggested in [11], [13], [12]. In order to show the accuracy of
model on prediction over constraints, we examine the model
on various well-known objective functions such as Sphere
(bowl-shaped), Ackley (many local optima) and Rosenbrock
(valley-shaped). Also, to evaluate the effectiveness of our
model on constrained problems, we use various numbers and
types of constraints. Tables II, III and IV show the prediction
results for Sphere, Ackley and Rosenbrock objective functions
respectively. The results show the number of correct algorithm
types prediction (success rate) from 30 different tests. Also,
one step further, the average deviations of required FEN (the
correct and predicted one) for the predicted algorithms are
calculated.

Table II compares the prediction results for our proposed
model (PFR-PM) and random only model (RO-PM) for Sphere
COPs. The results indicate the effectiveness of choosing the
proper subset training instances. It is observed that the pre-
diction algorithm success rate for our proposed model (PFR-

TABLE III: Comparison of PFR-PM with RO-PM models for
Ackley function with various types of constraints (linear (L),
quadratic (Q) and their combination). Average deviation of
FEN denotes the average of differences between actual and
predicted required FEN for PFR-PM and RO-PM.

Problem Success| Success Average Average p-

rate rate deviation deviation value

RO- FR-PM of FEN for | of FEN

PM RO-PM for PFR-

PM

Ackley, 1L 0 27 9.3K 2.5K 0.043
Ackley, 2L 1 27 11.5K 3.2K 0.016
Ackley, 3L 2 25 10.3K 2.7K 0.004
Ackley, 4L 1 28 14.7K 3.6K 0.008
Ackley, SL 6 29 13.8K 4.5K 0.025
Ackley, 1Q 2 29 16.3K 3.5K 0.046
Ackley, 2Q 1 27 17.7K 4.1K 0.026
Ackley, 3Q 0 25 18.3K 37K 0.043
Ackley, 4Q 3 27 16.9K 5.1K 0.048
Ackley, 5Q 2 29 21.9K 5.8K 0.034
Ackley, 4L, 1Q 4 24 15.8K 42K 0.032
Ackley, 3L, 2Q 2 26 16.7K 4.6K 0.012
Ackley, 2L, 3Q 3 24 16.8K 4.9K 0.006
Ackley, 1L, 4Q 0 28 19.8K 4.3K 0.021

TABLE IV: Comparison of PFR-PM with RO-PM models

for Rosenbrock function with various types of constraints

(linear (L), quadratic (Q) and their combination). Average
deviation of FEN denotes the average of differences between
actual and predicted required FEN for PFR-PM and RO-PM.

Problem Succeps Success Average Average p-

rate rate deviation deviation value

RO- | FR-PM of FEN | of FEN

PM for RO- for PFR-

PM PM

Rosenbrock, 1L 2 26 10.3K 3.3K 0.038
Rosenbrock, 2L 0 26 11.5K 4.6K 0.035
Rosenbrock, 3L 3 25 12.7K 3.6K 0.002
Rosenbrock, 4L 4 27 15.8K 5.2K 0.035
Rosenbrock, 5L 5 28 19.4K 5.1K 0.028
Rosenbrock, 1Q 2 27 17.4K 4.1K 0.017
Rosenbrock, 2Q 1 29 21.5K 4.7K 0.043
Rosenbrock, 3Q 4 26 21.3K 5.7K 0.037
Rosenbrock, 4Q 3 28 18.5K 5.2K 0.043
Rosenbrock, 5Q 2 28 24.6K 6.9K 0.004
Rosenbrock, 4L, 1Q 1 28 14.7K 3.6K 0.004
Rosenbrock, 3L, 2Q 0 24 17.4K 4.7K 0.024
Rosenbrock, 2L, 3Q 4 25 19.5K 3.6K 0.029
Rosenbrock, 1L, 4Q 2 27 21.3K 5.2K 0.006

PM) is significantly better than RO-PM for all Sphere COPs
using various combinations of constraints. The success rate
(out of 30 tests) for newly testing given COP is significantly
higher for PFR-PM comparing to RO-PM. Also, the low value
average deviation of predicted FEN and actual one for PFR-
PM represents its higher accuracy in predicting the algorithm
performance in terms of function evaluation number.

By observing the Tables III and IV, we realise that our
prediction model (PFR-PM) is reliable in predicting with
only constraints. In other words, experimenting other types
of objective functions (Bowl-shaped, many local-optima and
valley shaped) with accurate results shows the ability of the
model to predict based on constraints. Based on the Table
III, the lower value of FEN average deviation indicates the
higher accuracy of PFR-PM for Ackley COPs. Also, the results
for Rosenbrock COPs with 1 to 5 linear (L), quadratic (Q)
constraints (and their combination) shows the accuracy of PFR-

PM comparing to RO-PM. The average deviation of FEN for
Rosenbrock problems denotes the significantly close predicted
FEN with PFR-PM (see Table 1V).

As mentioned before, the output of our proposed prediction
model (PFR-PM) includes predicted algorithm with its re-
quired FEN. It is observed that the prediction model is capable
of suggesting the best algorithm and required FEN based
on constraint features of given COP. Due to the stochastic
nature of evolutionary optimisation, the above benchmark tests
are repeated 30 times and the two-tail t-test significance is
performed for average deviations of FEN. The significant level
a is considered as 0.05. The p-values for significance of a
difference between FEN average deviation of Pareto front with
random (PFR-PR) and random only (RO-PR) models for each
Sphere, Ackley and Rosenbrock are shown in Tables II, IIT and
IV respectively. The results show that the difference in FEN
Average deviation are significant and less than 0.05.

As discussed earlier, the idea of designing a prediction
model based on instance features is rather a novel approach
in algorithm selection problem. Training a model with COP
instances from multi-objective evolver improves the prediction
accuracy. The performance prediction (FEN) and suggested
algorithm can be used to produce the final output of our
prediction model. As we know selecting a suitable algorithm
for a given problem requires substantial amount of time. In
contrast, in our approach, we only need to extract features of
a problem once and the model produces the final output. It
is observed that selecting different sets of training instances
improves the prediction model success rate. We designed and
examined various prediction model using different subsets of
problem instances from evolver population set. In order to
show the ability of the prediction model only based on con-
straints features we use various objective functions. Results for
these COPs with different combinations of objective functions
and constraints indicate that the model is highly accurate in
algorithm and required FEN prediction.

V. CONCLUSION

In this paper, we examined the impact of different types of
problem instances that can be used in prediction models for
constrained continuous optimisation. Our resulting prediction
model captures the links between constraint features, algorithm
type performance and the required function evaluation number.
The model inputs are considered as constraint features and
selected parameter settings. The outputs includes the required
function evaluation number and most suited algorithm type to
solve the given COP.

The model was trained (using NN learning strategy) with
evolved COP instances. To improve the accuracy of the model
we used evolved instances that are hard/easy for one and
easy/hard for the other algorithms. These training instances are
generated with multi-objective evolver. We first, chose various
subsets of instances from multi-objective evolver population
set. The experimental results show that our prediction model
based on constraint features is able to give a good prediction
when using the Pareto front instances in combination with
random instances.

ACKNOWLEDGEMENTS

This research has been supported by the Australian Re-

search Council under grant agreements DP130104395 and
DP140103400.

[1]

[3]

[4]
[5]

[6]

REFERENCES

S. Poursoltan and F. Neumann, “A feature-based comparison
of evolutionary computing techniques for constrained continuous
optimisation,” in Neural Information Processing, ser. Lecture Notes
in Computer Science, S. Arik, T. Huang, W. K. Lai, and Q. Liu,
Eds. Springer International Publishing, 2015, vol. 9491, pp. 332-343.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-26555-1_38

——, “A feature-based analysis on the impact of set of constraints
for e-constrained differential evolution,” in Neural Information
Processing, ser. Lecture Notes in Computer Science, S. Arik,
T. Huang, W. K. Lai, and Q. Liu, Eds. Springer International
Publishing, 2015, vol. 9491, pp. 344-355. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-26555-1_39

E. Mezura-Montes and C. A. Coello Coello, “Constraint-handling
in nature-inspired numerical optimization: past, present and future,”
Swarm and Evolutionary Computation, vol. 1, no. 4, pp. 173-194, 2011.

J. R. Rice, “The algorithm selection problem,” 1975.

M. A. Muiioz, M. Kirley, and S. K. Halgamuge, “A meta-learning
prediction model of algorithm performance for continuous optimiza-
tion problems,” in Parallel Problem Solving from Nature-PPSN XII.
Springer, 2012, pp. 226-235.

K. Smith-Miles, “Towards insightful algorithm selection for optimi-

sation using meta-learning concepts,” in WCCI 2008: IEEE World
Congress on Computational Intelligence. 1EEE, 2008, pp. 4118-4124.

B. Bischl, O. Mersmann, H. Trautmann, and M. Preuf}, “Algorithm
selection based on exploratory landscape analysis and cost-sensitive
learning,” in Proceedings of the I14th annual conference on Genetic
and evolutionary computation. ACM, 2012, pp. 313-320.

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

K. A. Smith-Miles, R. J. James, J. W. Giffin, and Y. Tu, “A knowledge
discovery approach to understanding relationships between scheduling
problem structure and heuristic performance,” in Learning and intelli-
gent optimization. Springer, 2009, pp. 89-103.

S. Poursoltan and F. Neumann, “A feature-based analysis on the
impact of linear constraints for €-constrained differential evolution,”
in Evolutionary Computation (CEC), 2014 IEEE Congress on. 1EEE,
2014, pp. 3088-3095.

R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the cec 2010 competition on constrained real-parameter
optimization,” Nanyang Technological University, Singapore, 2010.

T. Takahama and S. Sakai, “Constrained optimization by the € con-
strained differential evolution with an archive and gradient-based mu-
tation,” in Evolutionary Computation (CEC), 2010 IEEE Congress on.
IEEE, 2010, pp. 1-9.

D. V. Amold and N. Hansen, “A (1+ 1)-cma-es for constrained
optimisation,” in Proceedings of the 14th annual conference on Genetic
and evolutionary computation. ACM, 2012, pp. 297-304.

Y. Wang and Z. Cai, “A hybrid multi-swarm particle swarm optimization
to solve constrained optimization problems,” Frontiers of Computer
Science in China, vol. 3, no. 1, pp. 38-52, 2009.

T. Robi¢ and B. Filipi¢, “Demo: Differential evolution for multiobjective
optimization,” in Evolutionary Multi-Criterion Optimization. Springer,
2005, pp. 520-533.

F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, ‘“Perfor-
mance prediction and automated tuning of randomized and parametric
algorithms,” in Principles and Practice of Constraint Programming-CP
2006. Springer, 2006, pp. 213-228.

K. Leyton-Brown, E. Nudelman, and Y. Shoham, “Empirical hardness
models: Methodology and a case study on combinatorial auctions,”
Journal of the ACM (JACM), vol. 56, no. 4, p. 22, 2009.

D. W. Marquardt, “An algorithm for least-squares estimation of non-

linear parameters,” Journal of the Society for Industrial & Applied
Mathematics, vol. 11, no. 2, pp. 431-441, 1963.

