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Abstract

Instruction set simulation, while convenient for embedded development, introduces

overheads into application execution by having to simulate hardware in software. These

overheads range from immediately apparent through to impractical depending on the

style of simulation and the software being simulated. In this paper we look at an imple-

mentation aimed at increasing simulator efficiency through asynchronous optimisation

of code blocks, employing the LLVM Compiler Infrastructure as an alternative JIT

backend for the Qemu ARM user-space simulator.
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1
Introduction

1.1 Dynamic Translation

Dynamic translation refers to the practice of just-in-time compilation of a source lan-

guage into an intermediate or native language that can then be executed. Dynamic

translation has quite a history; first references to the concepts seemed to have appeared

throughout the 1960s[1]. Over time the idea has evolved, moving in and out of popu-

larity until recent times, where languages such as Sun’s Java have thrust the term into

prominent focus.
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2 Introduction

1.2 Where are Dynamic Translators used?

Dynamic translators are used for all manner of purposes, indeed several classification

systems have been proposed on how to identify them[2][1]. Mostly they are associated

with dynamic languages, where type information isn’t determined until runtime. By

compiling the code as needed, the availability of the type information potentially allows

for more intelligent decisions to be made with regards to code optimisation.

Examples of current popular dynamic languages include those based on Microsoft’s

.NET and Java, though these are not the only consumers of the Just-In-Time (JIT)

compilation concept. The abstract notion of source and destination languages allows

us to push dynamic translation into practically any computing environment; one such

area is dynamic binary translation, the subject of this paper.

1.3 Dynamic Binary Translation

Dynamic binary translation is commonly used for simulating one processor architec-

ture on another, the source language being the instruction set for the original archi-

tecture and the destination language the native instruction set. A popular motivation

for dynamic binary translation is developing software for embedded platforms, where

developers may not have access to the device, or testing the software on the device

involves a tedious process that gets in the way of application development.

This project looks at the potential for reducing the wall-clock execution time of the

simulation process, as there are many costs involved in instruction set simulation across

different architectures. Issues inherent to instruction set simulation can be categorised

into roughly four different areas:

• Dispatch and Execution

• Dynamic Translation / Optimisation

• Memory Management

• Device IO
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Each of these impose a time penalty on the simulation, as instead of being handled

in hardware the points listed must be handled in software (by the simulator).

1.4 Instruction Set Architectures

Different areas of computing are driven by different requirements, and as such instruc-

tion set and processor design is an important aspect of machine development.

Embedded computing often has tight requirements as to the amount of resources

it can consume, such as power. Typical desktop processor architectures such as Intel’s

x86 family are designed around performance, and as such are often unsuitable for

embedded environments due to their level of resource consumption.

The ARM line of processor architectures have been designed from the ground up

with these resource limitations in mind, and through its well-designed, simple, constant

length instruction set the processor designs are compact and energy efficient while still

offering good performance.

1.5 Project Tasks and Aims

The initial task of the project was to identify which of these areas imposed the greatest

time penalty for an ARM instruction set simulator running on an x86-64 machine. The

second stage consisted of following this initial work up with a design aimed at reducing

the bottlenecks in the process and increasing simulation efficiency.
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2
Literature Review

Dynamic translation, as outlined in the introduction, has quite a history behind it

already; failing to pay attention to this would be somewhat of a fallacy. We will now

survey some of the work already been done in the field in order to gain insight into

areas that have potential for improvements

Starting with A Brief History of Just-In-Time Compilation[1] we find that ideas

common-place in todays translators have evolved over quite some time. Different lan-

guage implementations introduce new concepts or ideas on how to deal with problems

encountered: for example the original research on LISP seeds the idea of compiling

functions fast enough that they don’t needn’t be stored.

Significant properties of languages outlined by [1] will be discussed briefly here,

as their influence has reached through to the tools used throughout the paper. The

concepts can be split into roughly two categories: Optimising the code generation and

5
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optimisation of the generated code.

With regard to the former, one of the first significant concepts is from the LC2

language, that of storing instruction traces from interpretation. A modern version of

this technique has gained popularity recently in the web-space, where optimisations

operate on hot traces to improve performance in a Javascript execution engine[3].

Following this, the BASIC language landed the idea of throw-away compilation,

which at its core is the notion that code that is dynamically generated code can always

be regenerated. In the case of memory pressure the code buffer can be either completely

or in part discarded, and the dynamic translation performed again as needed.

Finally, the templating strategy as implemented by some ML and C dynamic trans-

lators makes use of both static and dynamic environments. Prior to execution of code a

static compiler is used to generate relocatable stubs, which are filled in at run-time by

the JIT compiler. This removes some of the time pressure on the dynamic translator,

enabling the simulation to continue quicker than it would otherwise.

The latter, optimising the generated code, is reported to first be considered by

FORTRAN. FORTRAN’s hotspot algorithm incrementally applies more expensive op-

timisations as the number of executions of a code block increase. Taking this concept to

the extreme was Oberon, introducing continuous run-time optimisation. Throughout

the life of the application (during idle-time) the optimiser works on rearranging the

program for increased cache performance based on the recent history of memory ac-

cesses. This strategy was chosen due to the potential for semantic optimisation having

an effect being drastically reduced across long running applications; once an optimi-

sation has been applied further applications are typically redundant. Cache misses on

the other hand can be adjusted for as the input varies, potentially providing a close to

optimal performance.

The final concept explored here and by the paper is continuous compilation, in-

troduced by the Java Virtual Machine. When the virtual machine encounters an un-

translated section of code, two processes are launched in separate threads: Application

execution continues through interpretation of the bytecode, while in the background

on the second thread the code is compiled to the native architecture for faster future
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execution.

Having looked at an abridged version of the history of JIT systems, we will now

explore the current space of instruction set simulators and their claims of performance.

Simulation style, and indirectly, performance, is divided by the intended use case:

Cycle accurate or functional simulation:

• Functional simulation is typically used where strict hardware accuracy is not

required, or where the penalty incurred by cycle-accurate simulation is too high

due to the increased constraints on emulated hardware timings.

• Cycle accurate simulation is motivated by hardware development or instruction

set functionality testing. A cycle accurate simulator ensures that all actions take

proportional time to the actual hardware, a process that can be many times

slower than a functional simulation.

Having said that, [4] details a method in which functional simulations can be used

to approximate cycle accurate simulations through linear regression. While mentioned

for completeness, cycle accurate simulators are not considered throughout the rest of

this paper.

The first functional simulator studied is outlined in [5], which claims simulation

times of between 1.1 and 2.5 times the native execution time. This is a somewhat

fascinating claim until the implementation is discussed1. To achieve this level of speed

the simulator leverages a static compilation technique via a RISC-like virtual machine.

This has the unfortunate side-effect of removing support for self-modifying code, ruling

out simulating any binary that dynamically loads libraries. The claim made in the

paper is that dynamic loading is somewhat avoided in the embedded world, and as

such doesn’t have the impact it might seem to initially.

The second functional simulator is Simit-ARM[6]. Unlike the previous simulator

it doesn’t make use of prior static compilation and does support self-modifying code.

The primary claim of Simit-ARM is that it was one of the first to attempt concurrent

1Benchmarking ARM binaries in Qemu shows it is in the range of seven to 10 times slower than

native performance, making this claim suprising
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dynamic translation of hot pages, making use of the multi-core architectures that are

becoming only more readily available. The simulation strategy is to interpret instruc-

tions whilst the associated compiled page is unavailable2. Hot host code pages are

modelled as functions in C++ (used as an intermediate representation) and compiled

by GCC into a shared object. Once the shared object becomes available it is dynami-

cally linked into the simulator; all future executions of a PC value held in a compiled

page are dispatched to the appropriate dynamically linked function.

Simit-ARM’s approach requires instruction interpretation while there is no compiled

code available for the instruction. This leads to a somewhat slow simulation in some

circumstances; situations for which Qemu[7] is much better suited. Like Simit-ARM

Qemu is an open source machine emulator, known for its speed and wide variety of

supported architectures.

As described in its technical paper[8], Qemu’s simulation strategy is purely dynamic

translation of basic-blocks from the emulated binary. No interpretation of instructions

means that the simulation is temporarily halted whilst the translation is taking place,

but as the sections of code being translated are small this pause is typically unnoticeable

to the user. Once translated the native code remains stored in a static buffer in memory,

negating the need for future translations so long as the buffer is not emptied3.

To improve the execution speed further, Qemu’s direct block chaining strategy al-

lows native code to jump directly to the following native block4. This avoids the need

to return to the dispatch loop, where intensive tasks such as interrupt and exception

processing take place.

Due to its flexibility and speed Qemu has been the subject of a number of modifi-

cations; it is used in the PTLsim cycle accurate simulator[9], llvm-qemu[10] and as the

basis for qemu-mips[11] (now the Open Virtual Platform).

2Which will always be the case for cold pages
3Qemu implements the throw-away compilation strategy discussed in [1]
4Representing the subsequent block in the emulated binary



3
Initial Experiments

3.1 The Baseline

3.1.1 Qemu: A Fast Instruction Set Simulator

As discussed in the Literature Review, Qemu is open source, fast and adaptable to

different architectures, substantiated by the number that it supports[12]. As it claims

to be one of the faster functional simulators in the open source arena[13], it was chosen

as the basis for the project’s exploratory work.

In order to reduce the complexity of the project, only user-space emulation will be

considered throughout the paper. This does not restrict the implementation from being

applied to full system-emulation however; Qemu’s user-space emulation is a subset of

the functionality of full system emulation. To further restrict complexity, the Thumb

9
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and Thumb2 variants of the ARM instruction set were disregarded, though the work

presented is applicable to these and other architectures.

3.1.2 GNU GCC

The GNU Compiler Collection[14] is the venerable open source compiler maintained by

the Free Software Foundation. All software used throughout the project was compiled

using the GCC suite, due to its flexibility in terms of architectures and languages

supported, as for its stability.

Two versions of the GCC collection were used throughout the project, one for

compiling native applications, and a second, cross-compiling version for generating

ARM binaries. Qemu and all other native supporting software was compiled with GCC

x86 64-pc-linux-gnu-4.4.2, while the SPEC 2006 benchmarks, discussed next, used

a GCC ARM cross-compile tool chain: arm-softfloat-linux-gnueabi-4.3.3.

3.1.3 SPEC INT 2006

In order to profile Qemu’s execution some benchmark binaries are required. The SPEC

benchmark suite[15] is produced by a number of industry parties including Intel, AMD,

Microsoft, Sun Microsystems and Redhat, the aim of which is to provide a suite that

enables fair comparison of different hardware, compilers or other technologies involved

in the hardware/software development stack.

Utilising SPEC benchmarks according to the guidelines provided, parties can pro-

duce results that compare their hardware or software against their competitors. As

such, this benchmark suite provides a solid basis for testing what this project aims to

achieve: A speed up of the emulation process through augmenting of Qemu, attempt-

ing to optimise it for increased performance / decreased wall-clock execution time of

simulations.

Throughout this paper, all SPEC benchmarks were cross-compiled with GCC toolchain

outlined above and with no optimisations enabled.
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3.2 Instrumenting Qemu

Having chosen Qemu as the basis for the project, the aim was to find where it was

spending the bulk of its execution time and to try optimise that section. Given that

Qemu is a dynamic translator this is a much harder task than for regular applications,

as a sizable amount of the code being executed is generated on the fly and is devoid

of symbol information. Results devoid of symbol information at the known location

of Qemu’s static code buffer identified the anonymous regions of execution reported

by the OProfile tool as the dynamically translated code. The measurements gathered

using OProfile, discussed below, showed that a substantial amount of the wall-clock

execution time was spent running code that had been dynamically translated.

Several techniques are common for instrumenting code externally - the first being

a Monte Carlo style systems that sample the application’s execution at regular points

in time. A second style is through instruction set simulation - essentially virtualising

the application in order to track what it is executing. This second style provides com-

plete coverage of the instrumented code - we can gather exact data on call graphs,

memory allocations, usage and cache profiling. A third option is instrumentation ap-

plications similar to the venerable gprof, which utilise the symbol table and debugging

information to track function calls and execution times.

In addition to the techniques outlined above, some manual profiling of TCG, Qemu’s

JIT subsystem, was performed. This was at a stage where gprof and Valgrind were

both failing to give results, and under the assumption that Qemu would be spending

a reasonable amount of time translating basic blocks. This assumption turned out to

be incorrect, with various SPEC benchmarks and the DietPC ARM release of Debian

showing that it in fact spent very little time translating code. According to the profiling

information, approximately two seconds of the 70 seconds it took to boot Debian inside

Qemu were spent translating the ARM to x86-64.

Applications implementing each of the techniques outlined above were trialled on

Qemu: OProfile for the Monte-Carlo style sampling, Valgrind[16] for the Instruction

Set Simulation approach, gprof for execution tracking; each with varying success. As
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hinted in the opening paragraph instruction set simulators are a special breed of ap-

plication that have requirements outside of what might normally be expected. Due to

this, instrumentation with gprof and Valgrind produced little usable information; gprof

caused Qemu to immediately exit with an uncaught signal exception, while Valgrind

was unable to identify symbols in the qemu-arm image, rendering its results unusable.

Turning to OProfile, results were finally obtained that allowed the project to move

forwards.

3.2.1 OProfile

OProfile[17] fits into the Monte Carlo profiler style outlined earlier; its core feature

is to sample the instruction pointer of the executing application at given intervals

and resolve it to the parent function name. In addition it makes use of hardware

performance counters present on modern-day chips such as Intel and AMD processors

to enhance its accuracy. Other statistics such as callgraphs can also be gathered for

further in-depth analysis of the application. OProfile consists of a Linux kernel module

along with several user-space support utilities to control the profiling daemon and

output reporting, including emulating gprof output formats.

OProfile was the tool of choice for instrumentation due to its simplicity and lack

of impact on the wall-clock execution time of applications being profiled. The graph

presented in Figure 3.1 demonstrates approximate proportional time spent executing

dynamically translated code, sitting between 60% and 80% across the SPEC bench-

marks trialled. This demonstrates the need for perhaps better optimisation of the

JITed code, though in a manner that will cause minimal impact on the simulation

itself.
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Figure 3.1: Profiling Qemu emulating different SPEC INT 2006 benchmarks. The bars
represent the percentage of time Qemu spent executing dynamically translated code over the
entire simulation for each benchmark



14 Initial Experiments



4
Project Architecture

4.1 Consumer Hardware and Simulator Design

Optimising the wall-clock execution time essentially comes down to ensuring the fol-

lowing:

1. The hardware framework is emulated as efficiently as possible

2. IO is performed as efficiently as possible

3. Target code is generated as efficiently as possibly

4. The generated target code is optimised for minimal use of cycles

Taking into account that the aim is to optimise the generated code, points 3 and

4 are relevant here. These are somewhat conflicting goals on single core machines, an

15
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environment that Qemu is optimised for. By performing optimisations on the target

code we spend longer in the target code generation process, blocking all other execution

while doing so. Introducing this overhead may still be of benefit in the case that the

block is hot, i.e. it forms part of a loop, or a frequently called function.

In the case of a single core machine, augmentation of Qemu in the manner proposed

below will very likely not have a positive effect unless the benchmark is small in size

and quite long running. In order to obtain the optimised code we give the machine

more work to do - in this case we’ll be generating the code twice as well as optimising it!

On a single core machine the implication is in order to do the second, more optimised

JIT compilation we have to interrupt the simulation, increasing the time it takes to

execute.

In this instance if more optimised code was to be generated, it should be performed

in the first JIT compilation. While this delays the execution of the block1 we do get

the more optimised code, which, if it turns out to be a hot block, should give a perfor-

mance boost. However this is at the cost of cold blocks also being optimised; depending

entirely on the type of application this may turn out to be a large disadvantage. Op-

timising code blocks in Qemu in this way has been attempted; the llvm-qemu project

is the end result of these efforts.

Due to the increasing pervasiveness of multi-CPU, and more frequently, multi-core

machines, along with the potential benefits of being able to chose the blocks we wish

to spend time optimising2 the structure outlined below was arrived at.

4.2 Architecture Description

The central idea of the project is similar to concepts that characterised Java and Simit-

ARM in the literature review: the utilisation of separate threads and cores to optimise

code asynchronously, and to push the optimised code into Qemu as it became available.

As TCG only has small support for optimising its own intermediate representation (IR),

1As we have to wait for it to be generated before we execute it
2llvm-qemu, due to its design, pushes all blocks through LLVM’s JIT, which depending on the

number of optimisations applied is quite heavyweight
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it was decided that an external optimising compiler should be used for simplicity3.

Given there are several open source Just-In-Time compiler libraries available (libJIT

and GNU Lightning for example), the question was which should be used?

4.2.1 The LLVM Compiler Infrastructure

The choice was the LLVM Compiler Infrastructure[18], which is designed as a set of

libraries on top of which compiler front-ends can be implemented. At the core of the

LLVM project is the single static assignment IR, on which may different local and

global optimisations operate. Included as part of the suite is a JIT compiler for var-

ious architectures, most importantly for this project including x86-64. Projects such

as Clang[19] (a new C-family front-end starting to compete with GCC), the Google-

sponsored Unladen Swallow[20] (a Python implementation) and Rubinius[21] (a Ruby

implementation) all make use of the LLVM infrastructure for target platform indepen-

dence and for producing fast and efficient machine code. This combination of features

and high-profile projects made it the suite of choice for implementing an optimising

front-end for Qemu.

Back to the architecture, the second choice was where to intercept the translation

process and to begin producing LLVM’s IR.

1. Directly translate ARM blocks to LLVM IR

2. Wrap LLVM IR API calls up in TCG IR API calls

3. Take the TCG generated target code and translate to LLVM IR

Item 2 was the subject of an initial attempt to integrate the LLVM JIT into Qemu

with the llvm-qemu project. The llvm-qemu project is distinct from the this investi-

gation in several ways; firstly it uses an older release of Qemu containing the dyngen

translation engine, which is heavily tied to the GCC3 suite. Secondly, wrapping LLVM

3Rather than developing optimisations to work on TCG IR
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IR up in TCG IR API calls effectively replaced the TCG backends with LLVM’s JIT,

removing the some of the speed of the original engine[22].

Items 1 and 3 are perhaps extreme options, though naturally have distinct and

interesting properties. Translating directly from ARM ensures we capture the seman-

tics of the block as succinctly as possible. The line of reasoning was that calling into

the LLVM IR API from inside the TCG IR API abstracts what the ARM instruc-

tions might have originally intended, and doubly so with translating from the TCG

generated x86.

Transforming the TCG generated x86 into LLVM IR, optimising then emitting the

result back into Qemu’s code cache was a little considered idea for a variety of reasons.

As discussed above we are already abstracted away from what the original intent of the

ARM block was, and additionally have the problem of variable length instructions with

a multitude of addressing modes. Somewhat bringing this back into consideration is

that LLVM has a x86 front-end already written for it, essentially giving the opportunity

to simply glue the parts together and be done with it.

Essentially the decision came down to the level of abstraction from the original

ARM block, and as such translating directly from ARM into LLVM IR was the chosen

path. This seemed like a reasonable metric at the time, but over the course of the

project it became clear that generating LLVM IR from the TCG IR would also be

quite a reasonable choice.

Having decided that multi-core machines were only going to grow in popularity4,

that LLVM was a good candidate for highly optimised code generation and that trans-

lating ARM to LLVM IR would produce the best results, the architecture of the project

was laid out so: Qemu and LLVM would operate in separate threads, allowing each

to be scheduled simultaneously on separate cores. Qemu, with its basic-block trans-

lation units, would enqueue candidate blocks in the external compilation system as it

encountered them, while the LLVM thread would fetch queued jobs as they became

available. On dequeuing a job the LLVM front-end would perform the translation and

4a view shared by the authors of Simit-ARM[6]
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optimisation, placing the resulting target code in an output queue. At an appropri-

ate time Qemu would fetch completed jobs from the output queue and replace TCG’s

target code with LLVM’s.

4.3 Further Experiments: Instruction Popularity

As outlined above, the planned design would take ARM instructions and transform

them into LLVM IR through the LLVM IR API. The various ARM architecture revi-

sions contain approximately 114 instructions and as such an important question, given

the temporal limitations of the project, was which instructions should it implement?

The metric used to define which instructions would be implemented was relatively

simple: A popularity contest run over the SPEC INT 2006 benchmarks as cross com-

piled to ARM by GCC 4.3.3 (arm-softfloat-linux-gnueabi). Taking the most popular

instructions ensures we have the greatest chance of making a difference whilst minimis-

ing the amount of work to be done. Using Qemu’s debug flag with the in asm option

logs instructions in ARM blocks as they are encountered. This output was analysed

with the final results outlined in Table 4.1.

Due to implementation details (discussed further on), we can discount the branch

instructions, leaving 10 popular instructions from the list. In the end this list mainly

served as a guide, as further implementation issues dictated the difficulty of teaching

the translator about different instructions.
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Instruction Sum

ldr 325064

mov 154253

str 112354

cmp 72717

sub 69163

add 52213

bl 49092

beq 25126

bne 21113

bx 16097

ldm 15263

push 12080

b 11150

lsl 9043

ldrb 1178

Table 4.1: ARM instruction popularity across 11 SPEC INT 2006 benchmarks compiled
by GCC4.3.3
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Implementation

Based on the architecture description outlined in the previous chapter, we begin to

explore the implementation of the system and how the design of the tools affected it.

5.1 Exploring Qemu

As discussed in Chapter 4, the core integration strategy was to have the LLVM front-

end/JIT on a separate thread, enabling the underlying operating system to schedule it

on a separate core as necessary. The naive view here is that we are effectively getting

the optimised code for free1, though issues like resource and lock checking/contention

plus code injection overhead make this not entirely true.

Here we inspect the operational aspects of Qemu, specifically looking at structures

1as we’re not interrupting the simulation to generate it

21
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involved in the translation process and how the involved functions effect and are affected

by them. Qemu carries a lot of context information around about under what conditions

a block was translated and how it fits back into the overall system.

As mention previously, Qemu’s modus operandi is to translate basic-blocks worth

of instructions at a time, caching the result for future executions. Optimisations like

direct block chaining allow it to continue execution of translated code without requiring

a jump out to the dispatch loop; this is handled by encoding the next block to be

executed as part of the current block. Blocks can be chained and unchained arbitrarily

in time as the emulator sees fit (though according to certain criteria), and as such the

functionality needs to be either emulated exactly by the LLVM-based system or left

alone. Understanding these small details is essential to ensuring the system works as

it should while allowing the LLVM translation process invisibly replaces blocks in the

background.

5.1.1 Generating TCG IR in Qemu

Here we will take a brief tour through the internal workings of Qemu and its JIT

subsystem, TCG (the Tiny Code Generator) in order to gain an understanding of its

operation prior to discussing the implementation of the proposed system. As we are

designing the system primarily with userspace emulations in mind, this tour will start

in the Linux userspace emulation code then move through the dispatch and translation

subsystems. The list below outlines the call sequence from main through to TCG IR

generation and code emission:

1. main: Performs option processing, loading the image to be emulated and initial-

ising the soft CPU state.

2. cpu loop: Initiates execution of basic block sequences. Following the execution

of the basic blocks, it handles exceptions and signals.

3. cpu exec: Prior to executing individual translated blocks, cpu exec checks for

outstanding exceptions and jumps out to cpu loop if any have occurred. Follow-

ing the exception handling, any pending interrupts are dealt before seeking out
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the next block to be executed.

4. tb find fast / tb find slow: Each of these locate the next block to be executed,

the latter being called in the case that the former fails to find the appropriate

TranslatedBlock struct. tb find slow always returns the block to be executed,

as on failing to locate it, the translation process is triggered.

5. tb gen code / cpu gen code: Both initialise the TranslationBlock struct and co-

ordinate the translation process respectively.cpu gen code dispatches individual

instructions from the host block to the appropriate disassembly front-end, which

in our case is the ARM front-end.

At this point the ARM block being translated has been transformed into TCG’s

IR (Intermediate Representation), where it is subjected to some quick optimisations

before the final transformation into semantically equivalent native code. This second

transformation from an intermediate representation to the native code, whilst interest-

ing, doesn’t concern this project. We are primarily interested in the process outlined

above, and how to perform it asynchronously with the LLVM compiler infrastructure

to generate better host code.

5.1.2 Thread Management

From the architecture defined above, where the LLVM front-end is residing on a sep-

arate thread to avoid introducing unnecessary overhead into the simulation, we need

some way to communicate jobs between Qemu and the LLVM front-end. The data

structure chosen for this was a ring buffer; operations on the queue are then constant

time, the buffer takes up a constant amount of space and as a datastructure is quite

simple to implement.

A ring buffer structure is used at each “end” of the LLVM front-end, one for Qemu

to insert jobs into and for the LLVM front-end to pull jobs from, along with another for

the LLVM front-end to push finished jobs into and for Qemu to pull the finished jobs

from. As these data structures are shared between threads some form of locking needs
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to take place in order to preserve sanity and correctness. Discussion of the locking

techniques used follows a look at what threading technologies are available and which

one was chosen to work with.

Several different threading or workload distribution implementations are available.

Pthreads is a POSIX threading interface available across most operating system plat-

forms. Qemu already makes use of Pthreads for farming off IO jobs, and as such is

already well entrenched in the code base. The cross-platform nature, well worn interface

and the fact that it was already integrated into Qemu quickly made it the implemen-

tation of choice. Other implementations are available such as OpenMP, though this is

somewhat newer and requires a compiler enabled with OpenMP support before it can

be used. Having said that, it seems that OpenMP has taken a relatively nice approach

to parallelism, abstracting the sometimes difficult lock management issues away from

the programmer and embedding the smarts in the compiler.

In order for the simulation to have high potential for operating quicker with the

addition of the optimising JIT, we want to hold it up as little as possible when trying

to insert or retrieve jobs from the LLVM front-end queues. As such, if a ring buffer

is locked when the simulation thread attempts to access it, Qemu should not block

until the lock becomes free but instead continue with the simulation. This applies to

both queues in question: It’s likely that one optimised block won’t make so much of

a difference if the simulation thread can’t obtain the lock to the job insertion queue.

Likewise, not obtaining a lock on the finished jobs queue simply means that the sim-

ulation thread will try next time it comes around, emptying the queue when it does

acquire the lock.

Pthreads offers access to three different styles of lock - mutex, reader-writer and

spinlocks. Mutexes were chosen for locking the new/completed job queues, as reader-

writer and spinlocks aren’t appropriate for the problem. Spinlocks aren’t appropriate

because we are unable to signal the LLVM thread when work becomes available. The

reader-writer lock paradigm doesn’t match the situation at hand as both threads will

always change values in the ring buffer whenever they want to obtain a lock2.

2They will always enqueue or dequeue objects from the queues
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The LLVM front-end, being a separate thread to the simulation, can block as long

as it likes. While we’d like to have the optimised blocks available as soon as possible,

there isn’t an immediate requirement on them being available3.

Queuing and Dequeuing LLVM Jobs

Having looked at how we interact with the two threads, we will discuss where we

introduce the threading into Qemu. The thread should only be instantiated once, and

needs to be available to accept jobs once the simulation begins. This indicates that

the instantiation should be near the beginning of the Qemu’s execution, somewhere in

the area of the main or cpu loop functions outlined in Section 5.1.1. The entry point

of cpu loop prior to its main loop was the place chosen.

While still specific to the linux-user front-end, it’s removed from the option pro-

cessing focus of the main function. Pushing the thread’s instantiation deeper into

Qemu’s architecture would reduce the boilerplate code in each front-end4, though

checks would be required in each loop iteration5 to ensure a thread is not instanti-

ated if one is already running.

Given that the thread is now instantiated and waiting for jobs, the location of

the job insertion and retrieval code should be discussed. While the job processing is

asynchronous, the position of this code is not entirely arbitrary. Certainly the job

insertion code should at least reside in a place that is logical with respect to the

Qemu/TCG code; from the description of Qemu/TCG’s translation process outlined

above a relevant place seemed to be in tb gen code, after processing of the ARM block

by cpu gen code. Figure 5.1 demonstrates the small modification required to insert

and retrieve jobs.

It’s important that the enqueuing of jobs does not take place prior to this point,

as the TranslationBlock structure, described next, will not have all the appropriate

metadata initialised. In order to keep changes as local as possible, immediately after

3Unlike with TCG, where the simulation is held up until the translated code becomes available
4i.e. in the other user-space front ends, bsd-user and darwin-user
5There are several main-loop style loops distributed through different functions.
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Trans lat ionBlock ∗ tb gen code ( CPUState ∗env ,

t a r g e t u l o n g pc , t a r g e t u l o n g cs base ,

int f l a g s , int c f l a g s )

{

Trans lat ionBlock ∗ tb ;

. . .

/∗ Generate TCG IR and na t i v e code . ’ env ’ i s a po in t e r to the

CPUARMState s t ruc t , ’ t b ’ i s the metadata s t r u c t f o r the curren t

b l o c k and ’ c od e g en s i z e ’ con ta ins the l en g t h o f the generated

na t i v e code once i t has been emi t ted . ∗/

cpu gen code ( env , tb , &c o d e g e n s i z e ) ;

. . .

/∗ I f the LLVM front−end can t r a n s l a t e the b lock , enqueue i t ∗/

i f ( tb−>l l vmable ) {

ext b lk cmpl new job (& l t s , tb ) ;

}

/∗ Check i f the LLVM fron t end has f i n i s h e d any jobs , and i f so ,

r ep l a c e the TCG−generated code f o r the a s s o c i a t e d b l o c k . ∗/

e x t b l k c m p l r e p l a c e b l o c k (& l t s ) ;

return tb ;

}

Figure 5.1: Qemu’s tb gen code function, augmented with the LLVM front-end’s en-
queue/dequeue code. The functions of the structs shown are described in later sections

calling ext blk cmpl new job to enqueue jobs the output queue is tested for finished

jobs. If any are found, the jobs are dequeued, with ext blk cmpl replace block

injecting the LLVM generated code into Qemu’s code cache until either the output

ring buffer is empty, or the simulation thread cannot immediately obtain a lock on the

output ring buffer.

The astute reader might raise the question about checking whether a block can be

replaced in cpu exec, prior to locating the block to be executed using tb find fast

or tb find slow. In this circumstance it’s possible that the block could be replaced

relatively soon after the LLVM-generated code becomes available, as the output buffer
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would be checked frequently. In the current position, the block injection code only

runs when other blocks require translation; this not necessarily the optimal case as

the optimised block might be replaced quite late, potentially after it’s required. In

our experiments the former in introduces a considerable slowdown, as the output ring

buffer is checked throughout the entire simulation; injecting the LLVM translated code

from the position outlined in the code above reduces the frequency at which the output

ring buffer is checked by forcing it to happen only when calls are made into TCG.

5.1.3 The TranslationBlock Structure and Code Caching

The TranslationBlock struct inside Qemu carries the block metadata for translation

and execution. Integration into the front-end is not required for block semantics to be

correct, but in order to place the externally generated code in the correct position for

execution it is vital. As such we don’t need to emulate this structure inside the LLVM

translator - the information is purely used as glue for the two systems.

TranslationBlock
Buffer

Translated Code
Cache

Native block
semantically
equivalent
to original
ARM block

ARM Binary

ARM
basic
block

TCG

Figure 5.2: An abstract view of some structures involved in Qemu’s dynamic transla-
tion/execution framework. An ARM basic block is mapped to a TranslationBlock, which in
turn points into the translated code cache at the place where the native code for the ARM
basic block was emitted
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Figure 5.3: An ARM block and the equivalent x86-64 instructions as generated by TCG.
As can be seen each ARM instruction decomposes into several x86-64 instructions. The
branch handling assembler is also highlighted, used by Qemu to jump either back to the
dispatch loop or to the next block.

The generated code that lands in the cache has a certain structure to it in order

to handle branches at the end of the ARM basic blocks. Translating the original

ARM branch instruction’s location into the equivalent target instruction will break the

simulation - we’ll wind up in a location containing ARM code, not native code. For

the branch, several cases are possible in Qemu: it either jumps out to the dispatch loop

to find the next block, or, if the block to be executed next has been generated, Qemu

may chain them together to avoid the dispatch loop[13].

The chaining code is is shaded dark grey in Figure 5.3. Depending on the route

taken with regards to integrating the LLVM-generated code back into Qemu, two ap-

proaches can be taken. The first is to generate the epilogue in the LLVM front-end and

to calculate the correct jumps as would be performed by the original TCG epilogue.

The jump values would necessarily be different, relative to where the JITed block of

code was placed by LLVM. This is most likely suboptimal: We would be reimplement-

ing the epilogue logic for no real gain as it has to have the form Qemu expects6. The

second option was to replace the TCG-generated code with the LLVM-generated code

6It cannot be optimised
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at the location pointed to by the pc in the corresponding TranslationBlock (see Fig-

ure 5.4), leaving the TCG-generated epilogue in tact and in use. The implications of

this second option are discussed in the following section.

5.1.4 Block Injection Techniques

Block injection concerns how we integrate the code generated by LLVM back into

Qemu. Whatever approach is taken, it has to integrate transparently and in a way

such that it doesn’t cause obvious overhead to the simulation. This can be achieved in

a variety of ways:

1. Create a new TB for the translated code’s associated ARM instruction pointer,

and insert this into Qemu’s block list

2. Overwrite the instructions at the translated block’s code cache pointer with a

call into LLVM’s JIT

3. Overwrite the instructions at the translated block’s code cache pointer with a

jump out to the LLVM JIT’s code cache

4. Overwrite the instructions at the translated block’s code cache pointer with the

code from LLVM’s JIT

It was the latter case that was chosen as a solution; the front-end was designed in

such a way as to avoid generating instructions that might contain relative or absolute

references that may break when the code is shifted in memory7. The first option

listed was the least discussed for several reasons. Using this method we would have to

regenerate the block epilogue8, which as discussed above was decided to be a task to

be avoided.

7In experiments with GCC at least, absolute references were compiled down to relative jumps. As

such avoiding conditional execution in output blocks may or may not have been necessary
8Due to relative jumps to locations being moved in memory
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struct Trans lat ionBlock {

/∗ s imu la ted PC corresponding to t h i s b l o c k (EIP + CS base ) ∗/

t a r g e t u l o n g pc ;

t a r g e t u l o n g c s ba s e ; /∗ CS base f o r t h i s b l o c k ∗/

/∗ f l a g s d e f i n i n g in which con t ex t the code was genera ted ∗/

u i n t 6 4 t f l a g s ;

u i n t 1 6 t s i z e ; /∗ s i z e o f t a r g e t code f o r t h i s b l o c k (1 <=

s i z e <= TARGET PAGE SIZE) ∗/

. . .

u i n t 8 t ∗ t c p t r ; /∗ po in t e r to the t r a n s l a t e d code ∗/

. . .

/∗ the f o l l ow i n g data are used to d i r e c t l y c a l l another TB from

the code o f t h i s one . ∗/

u i n t 1 6 t t b n e x t o f f s e t [ 2 ] ; /∗ o f f s e t o f o r i g i n a l jump t a r g e t ∗/

#ifde f USE DIRECT JUMP

u i n t 1 6 t t b j m p o f f s e t [ 4 ] ; /∗ o f f s e t o f jump i n s t r u c t i o n ∗/

#else

unsigned long tb next [ 2 ] ; /∗ address o f jump genera ted code ∗/

#endif

. . .

u i n t 3 2 t i count ;

/∗ F i e l d s added f o r LLVM front−end i n t e g r a t i o n ∗/

t a r g e t u l o n g e p i l o g u e p c ; /∗ po in t e r to the br /jmp insn at end o f ARM BB ∗/

u i n t 1 6 t ∗ o p c e p i l o g u e p t r ; /∗ po in t e r to br /jmp hand l ing IR at end o f TB ∗/

u i n t 8 t ∗ t c e p i l o g u e p t r ; /∗ po in t e r to br /jmp hand l ing code at end o f TB ∗/

int l l vmable ;

} ;

Figure 5.4: Qemu’s TranslationBlock struct from exec-all.h, showing some core
fields used in the dynamic translation process. The final four members are initialised
throughout TCG’s translation, and are used by the LLVM code injection function
(ext blk cmpl replace block) to overwrite the TCG-generated code correctly
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The main motivation for this choice was that it introduced the least overhead at

run time. The cost of calling out to instructions in the LLVM JIT was not ascertained,

but having the code inline would arguably cause less overhead.

With respect to the second item outlined above, this may have a prohibitive cost

on the first call to the function if not managed correctly. This cost would be the time

taken to generate the function if it had not happened already, effectively making the

design of putting the LLVM front-end on an asynchronous thread void as the emulator

would block waiting for the code to be generated. This could be avoided by also

asynchronously generating the function, which is what the method chose also does;

this approach is necessary in order to inject the code into the Qemu code cache to

begin with.

Something further to consider is that the target code block generated by LLVM will

(hopefully) be shorter that the TCG generated block. The question in this circumstance

is what to do once Qemu has finished executing the shorter code. Certainly it would

not be correct to continue to execute the TCG generated instructions following, which

might also be invalid due to the property of variable instruction lengths in x86(-64).

Two solutions are proposed:

• Insert a nop-slide9 from the end of the LLVM block down to the TCG generated

epilogue.

• Perform a relative jump over the bytes in the gap between the end of the LLVM

block and the TCG epilogue

Currently the former bullet is implemented, albeit with a little bit of style. Gaps

up to 15 bytes are filled with optimised x86 nops10; the typical x86 nop is the one byte

value 0x90. Inserting many single byte nops theoretically has a slight negative effect on

execution time due to each being an individual instruction and needing to be treated as

such. The optimised nops mostly comprise of longer instructions moving values back

9A nop-slide is a contiguous set of “no operation” instructions which allows the CPU to “slide”

from one location to another without modifying any state
10These nops have been taken from the GNU Assembler project - this fact is also noted in the source
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into their own registers. This is more efficient in the sense that less instructions are

pushed into the pipeline as less instructions are taking up the same space in memory.

However, according to benchmarks, this technique does not seem to make a visible

difference.

As noted in Future Work (Chapter 7), jumps to epilogues is a technique that is

intended to be implemented in the short term. It is expected this would have some

visible impact, as it removes the need to fetch and execute any instructions between the

end of the LLVM block and the beginning of the epilogue. Gaps of 40 to 50 bytes are

not uncommon11 and it’s expected that jumping over these, especially in hot blocks,

should show some improvement in runtime.

5.1.5 The CPUARMState Structure and Modelling Basic Blocks

The CPUState set of structures form the core of Qemu’s emulation system. This set of

structs, specifically the CPUARMState struct in our case, keeps track of the execution

environment that would normally be handled by some ARM-based hardware. This

includes the user register set12, banked registers, the CPSR13 and various modes that

ARM CPUs can operate in14.

In the translated code, TCG turns ARM register references into memory references

pointing into a register array, defined in Figure 5.5. Practically speaking, this is the

only real strategy available, as we are running software for another architecture inside

a piece of software. The emulated application’s register values will be clobbered on

jumping out to the emulator, and as such they must be preserved in memory in order

for the emulated application to execute correctly.

TCG performs some micro-optimisations regarding register allocation at code gen-

eration time, storing one or two highly reused values in registers until they are no longer

required. This avoids perhaps costly writes to memory and gives a speed increase with

11According to observations from the Qemu debug log
12The first 16 registers on the ARM architecture, the last 15 registers are for system operation;

interrupts and the like
13There are multiple CPSR registers in most ARM chips[23]
14Modes in this context refers to the different instruction set types: ARM, Thumb and Thumb2
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typedef struct CPUARMState {

/∗ Regs f o r curren t mode . ∗/

u i n t 3 2 t r eg s [ 1 6 ] ;

/∗ Frequent l y accessed CPSR b i t s are s t o r ed s e p a r a t e l y f o r e f f i c i e n t l y

This conta ins a l l the o ther b i t s . Use cp s r { read , wr i t e } to acces s

the whole CPSR. ∗/

u i n t 3 2 t uncached cpsr ;

. . .

/∗ cpsr f l a g cache f o r f a s t e r execu t i on ∗/

u i n t 3 2 t CF; /∗ 0 or 1 ∗/

u i n t 3 2 t VF; /∗ V i s the b i t 31 . A l l o ther b i t s are undef ined ∗/

u i n t 3 2 t NF; /∗ N i s b i t 31 . A l l o ther b i t s are undef ined . ∗/

u i n t 3 2 t ZF ; /∗ Z s e t i f zero . ∗/

u i n t 3 2 t QF; /∗ 0 or 1 ∗/

u i n t 3 2 t GE; /∗ cpsr [ 1 9 : 1 6 ] ∗/

u i n t 3 2 t thumb ; /∗ cpsr [ 5 ] . 0 = arm mode , 1 = thumb mode . ∗/

u i n t 3 2 t condexec b i t s ; /∗ IT b i t s . cpsr [ 1 5 : 1 0 , 2 6 : 2 5 ] . ∗/

. . .

} CPUARMState ;

Figure 5.5: Qemu’s CPUARMState struct from target-arm/cpu.h, showing some core
fields used in emulation, particularly the regs array.

the reduction in the need to go to cache or main memory in order to retrieve values

that might have been stored only the previous instruction.

Naturally, we want to retain compatibility with Qemu in the blocks we are gener-

ating externally through LLVM, and as such compatibility with this core structure is

required for transparent integration. We will see later on that the front-end is mainly

concerned with the very first field shown in Figure 5.5, regs. Creating transparent

access to this was enough for the instructions implemented, but if further instructions

are to be realised other members of the CPUARMState struct should also be imple-

mented. Probably the most important would be those members also shown in Figure

5.5: uncached cpsr, CF, VF, etc.

The CPUARMState struct is defined and initialised by Qemu, however we need access
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...
mov %edi, 0x28(%r14)
...
mov (%edi), 0x10(%r14)
...
mov 0x34(%r14), %r12d
...

TCG

ldr sl, [pc, #144]
ldr r4, [pc, #144]
mov r0, sp
bl 0x40081e1c

ARM Binary Qemu Code Cache

r10

r4

r0

CPUARMState
struct

...

...

...

...

Other struct
members

r13

Figure 5.6: The diagram demonstrates how the native code emulates accesses to the ARM
register set and how it utilises the pinned register value (r14, pointing to the CPUARMState
struct). Accesses to registers and other members of the struct are simply described as offsets
rather than magic memory addresses.

to it inside LLVM. Necessarily, we don’t want LLVM to define the structure as part

of its generated code, but instead to understand the view into the data structure - i.e.

how it fits together in memory and where its members lie.

A concern at this point is whether LLVM lays out structures in memory the same

way as GCC, as GCC was used to compile Qemu in all instances. In the code show in

Figure 5.7, this is controlled by the LLVM STRUCT NOT PACKED constant passed to the

LLVMStructType function. Passing 0 (the value of the constant) instructs LLVM to lay

out the members as they appear in the array defining the members, and not in some

other, perhaps more optimal, configuration.15

15The astute observer will note that there is no alternative configuration in this case, as the members

are all 32bits wide
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. . .

#define QEMU ARM NUM REGS 16

#define LLVM STRUCT NOT PACKED 0

. . .

/∗ Se t s up dc−>f unc t i on and dc−>cpu s t a t e ∗/

i n l i n e void

i n i t i a l i s e l l v m f u n c t i o n (LLVMARMDisasContext ∗dc , const char ∗name)

{

/∗ Equ iva l en t to ’ u i n t 3 2 t reg s [ 1 6 ] ’ in CPUARMState ∗/

LLVMTypeRef s t r u c t e l e m e n t s [ ] =

{ LLVMArrayType(LLVMInt32Type ( ) , QEMU ARM NUM REGS) } ;

/∗ Define the s t r u c t con ta in ing reg s [ ] (CPUARMState in Qemu) ∗/

LLVMTypeRef l l vm cpus ta t e =

LLVMStructType ( s t ruc t e l ement s , 1 , LLVM STRUCT NOT PACKED) ;

#define ADDR SPACE 0

/∗ Define a po in t e r to the CPUARMState− l i k e s t r u c t type we

de f ined above ∗/

l l vm cpus ta t e = LLVMPointerType ( l lvm cpustate , ADDR SPACE) ;

#undef ADDR SPACE

/∗ Define the func t i on we want to b u i l d the ba s i c b l o c k in ∗/

LLVMTypeRef args [ ] = { l l vm cpus ta t e } ;

dc−>f unc t i on = LLVMAddFunction( dc−>module , name ,

LLVMFunctionType ( l lvm cpustate , args , 1 , 0 ) ) ;

dc−>cpustate = LLVMGetParam( dc−>funct ion , 0 ) ;

/∗ dc−>cpu s t a t e now conta ins a po in t e r type to the CPUARMState

s t ruc t , passed as a parameter to the func t i on we ’ re d e f i n i n g ∗/

. . .

}

Figure 5.7: Describing the CPUARMState struct and a single member, uint32 t regs, in
LLVM. initialise llvm function also does the ground work for setting up the function
representing the ARM basic block to be translated

Referencing CPUARMState in LLVM-generated Blocks

At this point another of Qemu’s optimisations should be noted. As may be implied

from the description above, CPUARMState is a frequently accessed struct. It would
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perhaps be expensive if the pointer to this struct ever got spilled and then refetched

from cache/main memory. To avoid this case, Qemu makes use of a GCC feature

that enables applications to reserve a register and pin a value in it. In effect, this

removes the pinned register from the allocator’s pool and as such the value should not

be overwritten.

LLVM lacks support for global registers[24]16, and as we’re generating code with

LLVM that is aimed at replacing blocks of instructions inside Qemu17 we must be wary

of LLVM clobbering it. The register in question is r14 on the x86-64 architecture, an

interesting and appropriate choice as it turns out.

As defined in the x86-64 ABI[25], r14 is reserved for the caller function, so for

compilers conforming to the x86-64 ABI it can be guaranteed that functions generated

will either not use this register, or push it to the stack and restore it before returning.

This behaviour is rather favourable, as we know that code LLVM generates must

provide that value back to the parent, thus preserving it.

Given the pointer to CPUARMState is pinned in a register, it would be nice if we

could make use of it in the code generated by LLVM. It isn’t immediately obvious how

this might work however - we cannot easily tell LLVM this value is in r14 because it’s

hard to influence the register allocation choices. There are some workarounds however:

1. Define a new calling convention that modifies all function calls to pass the pointer

as the first value

2. Define LLVM functions to represent ARM blocks and pass the pointer as the first

parameter

Point 1 is entirely possible; LLVM allows for new calling conventions to be defined

as necessary, though this isn’t a job to be taken lightly. Point 2 ended up being the

chosen approach; while perhaps hack-ish, minimal effort is required to enable it. As it

16In practice it may be hard to guarantee the value hasn’t been changed, and this appears to be

the reason for the lack of support in LLVM for this feature
17That also know about the pinned value
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turns out the effort of implementing a custom calling convention would only save one

instruction overall, severely reducing its chances of being implemented.

The pointer, as far as the function is concerned, is now usable in the function;

LLVM knows what register the value is in due to it being passed as a parameter. As

it turns out on x86-64 the first parameter is passed in the rdi register given that it’s

a pointer to a struct. Our value is still in r14 however, and the magic method of

getting it to rdi isn’t entirely pretty. Prior to injecting the LLVM-generated code into

Qemu, mov %r14, %rdi is manually injected into the buffer, which the LLVM code

then follows. As rdi is not expected to be preserved by the callee, no more has to be

done with regards to looking after Qemu’s environment.

5.2 Generating the LLVM Intermediate Represen-

tation

We now begin to explore the ARM architecture in a little depth, as this knowledge

will be crucial to understanding how to approach implementing an ARM front-end for

LLVM and integrating it back into Qemu. In essence, ARM is a load/store architecture

consisting of 32bit fixed length instructions18. The design is purposefully simple in order

to provide for extremely low power budgets, though it has some interesting tweaks to

increase throughput and instruction density. All information presented here on the

ARM architecture is outlined in the ARM Architecture Reference Manual[23].

While reading through the following sections, it pays to keep in mind the following:

The ARM-LLVM front-end is split into roughly three different phases, mostly imple-

mented as switch statements. The first phase is concerned with fetching raw operands

common to most instructions from either the instruction itself (immediate values) or

the CPUARMState register array. The second phase involves addressing-mode calcula-

tions on the operands, such as shifts, to reach the actual operand value. The final

18For the original ARM instruction set. The Thumb instruction set is 16 bits wide, giving greater

code density, but is less expressive. Because of this, Thumb2 was designed, which stretches the

instruction width back out to 32 bits
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phase is to perform the operation on the operands and store the result as necessary.

The narrative will follow only the implementation of the LDR and STR instructions, as

most other instructions are implemented in a similar fashion.

In the ARM-LLVM front end the following instructions were implemented: LDR

and STR from the Load/Store Immediate/Register instruction categories and ADD, AND,

MOV, ORR and SUB from the Data Processing category. With regard to the LDR and

STR instructions, only the word size variants were implemented. We’ll now look briefly

at how ARM instructions are composed, in order to understand how the ARM-LLVM

front end disassembles them.

As mentioned above all ARM instructions are 32 bits in length, making them easy

to fetch randomly from memory as no knowledge of prior instructions is required19.

These 32bits are broken down into several different subsets, commonly the condition,

category, opcode and addressing mode bits, each of which are explained briefly

below. The type of instruction and whether any, all or other bit subsets are present is

usually determined by the category bit-field.

The condition bit-field (bits 31 to 28 inclusive), common to all instructions de-

fined by ARM, is one of the tweaks hinted at earlier. The status register, named the

Current Program Status Register (CPSR) on ARM platforms, is a critical part of most

modern processors. Its purpose is for determining whether certain events have taken

place during the execution of prior instructions. ARM instructions are conditionally

executed based on whether the condition bits match part of the CPSR. This technique

allows for greater code density through the removal of conditional branch instructions

determining whether a block should be executed.

To keep things simple, the code judging block suitability for translation by the

ARM-LLVM front-end only queues blocks where the condition field of all contained

instructions is set to the AL pattern (0xE). These instructions are executed under all

circumstances; they do not depend on the value of the CPSR.

Prior to inspecting the bit-fields of the relevant instructions, it should be pointed out

that there are a further two fields which are common to the instructions implemented in

19Unlike with x86, where prior instructions must be disassembled in order to determine their length
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addition to the condition and category fields. These are the Rn and Rd fields, which

describe the base and destination registers for the operation respectively20. Because of

this, the first operation (phase) performed in the front-end is to extract the Rn and Rd

values, and fetch the associated register values from the CPUARMState struct. The base

register, Rn, sometimes has corner cases attached to it; these are mainly centred around

r15, the Program Counter register on ARM. In some cases the PC cannot be used as a

base register due to side-effects introduced by the particular instruction type21.

As the category bit-field goes a long way towards determining the type of instruc-

tion currently being disassembled, the front-end begins by working with it to determine

what fields it should initially extract; as seen in Figure 5.8 we extract the Rn and Rd

values as necessary.

By determining the instruction’s category as described above, we now have a good

idea about the bit-fields that are contained in the remaining part of the instruction. We

will now look at the patterns present in the Load/Store categories, shown in Figure 5.9.

There are three different categories of Load/Store instructions, which are Immediate,

Register and Multiple. The Load/Store Immediate and all but one specific style of

Load/Store Register instruction were implemented. The Load/Store Multiple category

was omitted as it isn’t as commonly used as instructions from the former two categories.

The P, U, B, W and L bits detailed in Figure 5.9 determine the type of Load/Store

operation the instruction is to be. Bits B and L control the size of the data to be

manipulated and the manipulation to be performed, load or store, respectively. U

controls whether the offset is added or subtracted from the base register (Rn), while P

and W control the offset application and side-effects of the instruction.

Side-effects of the Load/Store category include none, pre- and post-instruction in-

crements applied to the base register. These side-effects are intended as optimisations

for loop constructs, allowing the hardware to increment the loop counter and perform

a separate operation all in the one instruction. To make these variants more sane

to deal with, macros were defined that represented each instruction type: load/store,

20The exception is the MOV instruction, which does not require Rn
21This is the case with the Load/Store instructions in pre- or post-increment mode.



40 Implementation

u i n t 3 2 t category = insn & INSN CAT ;

u i n t 3 2 t opcode = insn & DATA PROC OP;

u i n t 3 2 t reg rd , r eg rn ;

LLVMValueRef rd , rn , rn va lue ;

r eg rd = INSN Rd( insn ) ;

rd = qemu get reg32 ( dc , r eg rd ) ;

/∗ Don ’ t t r y e x t r a c t Rn fo r MOV, i t doesn ’ t use i t ∗/

i f ( ! ( (DATA PROC == category | | DATA PROC IMM == category ) && MOV == opcode ) ) {

r eg rn = INSN Rn( insn ) ;

rn = qemu get reg32 ( dc , r eg rn ) ;

rn va lue = LLVMBuildLoad( dc−>bu i lde r , rn , ” rn va lue ” ) ;

i f (15 == reg rn ) {

int e r r o r ;

rn va lue = i n s n h e l p e r r n r 1 5 ( dc , insn , rn va lue , &e r r o r ) ;

i f ( ! rn va lue ) {

switch ( e r r o r ) {

case EUNPREDICTABLE:

f p r i n t f ( s tde r r , ”%x : I n s t r u c t i o n has UNPREDICTABLE”

” r e s u l t s !\n” , insn ) ;

break ;

case EUNIMPLEMENTED:

f p r i n t f ( s tde r r , ”%x : Unimplemented i n s t r u c t i o n \n” , insn ) ;

break ;

default :

f p r i n t f ( s tde r r , ”%x : Ummm. . . \ n” , insn ) ;

break ;

}

return −1;

}

}

}

Figure 5.8: The initial phase: Determining the instruction’s category, loading val-
ues ready for addressing-mode calculations (second phase) and instruction operations (final
phase).
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cond
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cat
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RdRn

Figure 5.9: The ARM instruction bit-fields common to the Load/Store categories. Bits
11 to 0 are determined by the category (cat), and form the operands for the addressing mode.

immediate/register, word/byte, pre and post increment.

The second phase of disassembly is introduced for the following reason: The imme-

diate and register-based variants of the instructions differ only on how the operands’

final values are calculated. The final phase applies the instruction’s actual operation,

be it a LDR, STR, ADD or MOV to the values calculated in the second phase. The LDR and

STR second phase operations are described in Figure 5.10. By separating out the calcu-

lation of the operand’s final value from the instruction operation we reduce duplicate

code and have a cleaner implementation of each of the instructions.

Following the second phase as outlined in Figure 5.10, the instruction operation

is performed, along with the operations to the loop counters in the case of LDR and

STR instructions. The final phase is handled in much the same manner as the previous

phases first switching on the category and then on flags or opcode as appropriate.

The final phase for the LDR and STR instructions is demonstrated in Figure 5.11.

5.3 Optimising and Compiling the LLVM Interme-

diate Representation

Above we explored the process of disassembling the ARM instructions and generating

the LLVM intermediate representation by calling into the LLVM IR API via the C

bindings. In this section we will look at the result of these calls, the intermediate rep-

resentation, the optimisation passes and finally generating the native code via LLVM’s

JIT compiler.
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LLVMValueRef address ;

switch ( category ) {

case LDR STR IMM: /∗ Load/ Store Immediate ∗/

/∗ Ca l cu l a t e the address from the immediate va lue and addre s s ing mode ∗/

address = insn he lper imm addr ( dc , insn , rn va lue ) ;

/∗ Set up the va lue as a po in t e r ∗/

address = LLVMBuildIntToPtr ( dc−>bu i lde r , address ,

LLVMPointerType (LLVMInt32Type ( ) , 0 ) , ”” ) ;

break ;

case LDR STR REG: /∗ Load/ Store Reg i s t e r O f f s e t ∗/

/∗ Ca l cu l a t e the r e g i s t e r s p o s i t i o n in CPUARMState ∗/

rm = qemu get reg32 ( dc , LDR STR REG Rm( insn ) ) ;

/∗ Load the r e g i s t e r ’ s va lue ∗/

rm value = LLVMBuildLoad( dc−>bu i lde r , rm , ”” ) ;

/∗ Ca l cu l a t e the address from the r e g i s t e r va lue and addre s s ing mode ∗/

address = i n s n h e l p e r r e g a d d r ( dc , insn , rn va lue , rm value ) ;

/∗ I f t h e r e ’ s an error , abor t d i sa s semb ly ∗/

i f ( ! address ) { return −1; }

/∗ Set up the va lue as a po in t e r ∗/

address = LLVMBuildIntToPtr ( dc−>bu i lde r , address ,

LLVMPointerType (LLVMInt32Type ( ) , 0 ) , ”” ) ;

break ;

. . .

}

Figure 5.10: The second phase: Determining the value, through initial operands and the
addressing mode, to work with in the final phase. For Load/Store instructions this will be
an address, for Data Processing instructions this will be an integer value. The Load/Store
immediate and register semantics are displayed above.

5.3.1 JIT Compiling the Intermediate Representation

To keep things short and relevant the result of the translation process for one instruc-

tion, “mov r2, r0” (GAS syntax)22 will be shown. Pushing this instruction through

the disassembly process outlined in the preceding sections, the LLVM IR API calls

22Interpreted as “Move r2 into r0”
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/∗ Ignore l d r / s t r U f l a g , d e a l t wi th in he l p e r f unc t i on s ∗/

u i n t 3 2 t f l a g s = insn & INSN FLAGS & ˜LD ST U ;

LLVMValueRef rd , rd va lue , address , addr e s s va lue ;

switch ( category ) {

case LDR STR IMM:

case LDR STR REG:

switch ( f l a g s ) {

case STRUW: /∗ Store word ∗/

/∗ Grab the va lue from the r e g i s t e r in CPUARMState ∗/

rd va lue = LLVMBuildLoad( dc−>bu i lde r , rd , ”” ) ;

/∗ Store i t out to memory ∗/

LLVMBuildStore ( dc−>bu i lde r , rd va lue , address ) ;

break ;

case LDRUW: /∗ Load word ∗/

/∗ Load the va lue from memory ∗/

addre s s va lue = LLVMBuildLoad( dc−>bu i lde r , address , ”” ) ;

/∗ Store the va lue in the CPUARMState r e g i s t e r s e t ∗/

LLVMBuildStore ( dc−>bu i lde r , addres s va lue , rd ) ;

break ;

. . .

}

break ;

. . .

}

Figure 5.11: The final phase: Performing the load or store operation once the address
has been calculated

generate the IR outlined in Figure 5.12.

LLVM has generated a function in accordance with our strategy for simulating

blocks. In C (with some Qemu context), the function prototype would look like:

CPUARMState *block_test(CPUARMState *);
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define { [16 x i32] }* @block_test({ [16 x i32] }*) {

entry:

%tmp1 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 0

%tmp2 = getelementptr { [16 x i32] }* %0, i32 0, i32 0, i32 2

%tmp3 = load i32* %tmp2

store i32 %tmp3, i32* %tmp1

ret { [16 x i32] }* %0

}

Figure 5.12: The LLVM intermediate representation of the mov r2, r0 instruction.

The body consists of a basic block of LLVM IR instructions23 simulating the input

instruction. %tmp1 holds a pointer into state pointing to r0, while %tmp2 holds a

pointer to r2. The value at the address in %tmp2 is then loaded into %tmp3, which

is subsequently stored at the location pointed to by %tmp1. At this point our mov

instruction is complete and the function returns.

As this is one instruction, attempting to optimise it yields the IR that we have

already - there’s nothing in it that’s redundant or not optimal. From here, the native

code (x86-64) is generated. The result is presented in Figure 5.13, and while reasonably

straightforward, does need some explaining.

mov %r14, %rdi

mov 0x8(%rdi), %eax

mov %eax, (%rdi)

mov %rdi, %rax

ret

Figure 5.13: The x86-64 assembly generated by LLVM’s JIT compiler from the IR rep-
resentation of mov r2, r0.

23While we’re simulating one block of ARM, this doesn’t necessarily map to one basic block of

LLVM or the native architecture
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The need for explanation stems from the very first instruction! The mov is not actu-

ally generated by LLVM’s JIT24, but is essential in order for the block to work correctly

if injected into Qemu. The mov places Qemu’s pinned pointer to the CPUARMState struct

into %rdi, where it becomes accessible to the following instructions. As explained in

Section 5.1.5 the %rdi register is designated by the x86-64 ABI as the register holding

the first parameter to a function. As we’re modelling the ARM basic blocks in LLVM

as functions taking one parameter, we give the LLVM generated code access to the

CPUARMState pointer by moving the pointer into %rdi. The remaining instructions are

all generated by the LLVM JIT compiler.

In terms of the semantics of the code, there are only two instructions that are

relevant here - the second and third mov instructions. The first operand of the second

instruction, 0x8(%rdi), points into the CPUARMState struct. Using our knowledge

of how it is constructed, we can understand why this offset is generated. The first

member of the CPUARMState struct is a 16 element array of type uint32 t. As such,

each element is 32 bits, or 4 bytes. Given we have an offset of 0x8 to %rdi, this is

pointing at the third element in the array: r2. The third mov inserts the value from r2

(now in %eax) at offset 0x0 into the CPUARMState struct: r0. The final two instructions

are concerned with returning the CPUARMState struct from the function. This is in fact

a hang-over from early attempts at keeping LLVM from optimising the struct accesses

away. Ideally the function should return void, though this is left for future changes to

the implementation: In terms of injecting the instructions into Qemu, these last two

instructions are discarded.

5.3.2 Optimising the Intermediate Representation

Having looked at how the LLVM IR compiles down to machine instructions, we’ll now

look at what is arguably the core of the project: The optimisations that are applied

to the IR prior to the JIT compilation. Optimisations in LLVM can be performed

in two different styles, as module or function passes. In the scope of this project,

24Currently it’s manually injected into the buffer, but it should be possible to specify inside the

LLVM functions using inline ASM
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function passes are the appropriate choice - as the name implies they apply only to

individual functions. Module passes, by comparison, are designed for applying global

and inter-procedural optimisations (i.e. across multiple functions). Applying a module

pass in this circumstance introduces a large penalty, as the system will be applying

the optimisations every time it generates a function. This leads to an ever increasing

workload for the optimiser as the functions are developed inside a single persistent

module.

The optimisation passes exposed by LLVM’s C bindings include:

• Constant propagation

• Promote memory to register

• Dead instruction elimination

• Dead store elimination

• Instruction combining

• Global variable numbering.

Each of these are applied to all the blocks that are fed through the LLVM subsystem,

frequently producing blocks that are smaller in length than their TCG equivalents.

One such case is demonstrated below. The ARM block in Figure 5.14 was encountered

during a simulation of one of the SPEC benchmarks by Qemu and pushed through

both the TCG and LLVM subsystems.

0x400818b4: add ip, pc, #0

0x400818b8: add ip, ip, #147456

0x400818bc: ldr pc, [ip, #1796]!

Figure 5.14: A simple ARM block. The instruction locations are shown here as they
play an important role in the optimisations performed by LLVM
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Dynamically translated by TCG, the native code seen in Figure 5.15 was generated.

The code shown excludes the branch handling code generated by TCG in order to give

a fairer visual comparison.

xor %r12d,%r12d

mov $0x400818bc,%r15d

add %r12d,%r15d

mov %r15d,0x30(%r14)

mov $0x24000,%r12d

mov 0x30(%r14),%r15d

add %r12d,%r15d

mov %r15d,0x30(%r14)

Figure 5.15: The semantically equivalent native block, as dynamically translated by
TCG.

LLVM on the otherhand, generates just one instruction (ignoring the required mov),

seen in Figure 5.16.

mov %r14, %rdi

mov 0x400a58bc, 0x30(%rdi)

Figure 5.16: The semantically equivalent native block, as dynamically translated by
LLVM

Such an optimisation of the block warrants some investigation to ensure correctness.

Is this optimisation legitimate? Consider the first ARM instruction: add ip, pc, #0.

This is semantically equivalent to to a mov, the value is just shifted between the pc

and ip registers. Unravelling the transitive relationships for the second instruction,

add ip, ip, #147456, reveals that this could really be reduced down to add ip, pc, #147456.

The optimisation doesn’t stop there though. Since the ARM binary is loaded into mem-

ory, the pc is now a known static memory location, a constant value. ARM defines
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references to the pc to report the value as eight bytes in front of the current instruc-

tion’s location; in the case of the first instruction giving the value 0x400818bc. At

the second instruction we’re now adding two constants, something that can be done

at compile time. Unsurprisingly, the result of the constant addition is 0x400a58bc,

making the optimisation legitimate25.

250x30(%rdi) resolves to r12, aliased as ip here.



6
Results

The aim of the project was to achieve shorter wall-clock execution times for ARM sim-

ulations in Qemu. In the previous chapters the concepts, designs and implementation

of an optimising ARM front-end were outlined; the material in this chapter focusses

on benchmarking the augmented version of Qemu to test whether it meets the stated

goals.

The sjeng and h264ref benchmarks from the SPEC suite were chosen for their dif-

ferent wall-clock execution times: The sjeng benchmark runs in a relatively short time

at just under two minutes, while the h264ref benchmark is longer, taking approximately

ten minutes to complete1.

The aim in choosing these two benchmarks was to show the effect of the optimised

1Approximate times were gathered from running the benchmarks inside mainline Qemu, version

0.10.6

49
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blocks over different execution times. Unfortunately comparisons cannot really be made

between the sjeng and h264ref benchmarks, as they are semantically and structurally

different. This has influences on how effective the ARM-LLVM front-end will be, as

it can only translate blocks completely composed of instructions it can disassemble.

The blocks will naturally have different purposes inside different applications - they

may or may not be hot blocks and contribute a lot or very little in improvements in

application execution time.

There is also the issue of non-determinism in the system: Separate runs will most

likely translate the same blocks, but this isn’t guaranteed due to locking constraints.

For much the same reason, it cannot be guaranteed that blocks will be translated or

replaced at the same point in time (relative to the start of translation), as it depends

not only on the locking constraints but also on the scheduling of the LLVM front-end’s

thread by the underlying operating system.

What we can get a picture of is approximately how much the ARM-LLVM front

end is contributing to the individual benchmarks. This can be a negative or positive

effect; it must be remembered that we’re adding code to the hot path 2 inside Qemu -

this will always introduce some overhead into the emulation.

6.1 Profiling Strategy

The most immediate test is whether the augmented version of Qemu is quicker than the

mainline version. However, its possible to gather more data than this as there are sev-

eral feature layers to the augmented version: Threading/job queuing, code generation

and code injection. Benchmarks were performed in the following order:

1. Mainline Qemu: Version 0.10.6

2. Augmented Qemu: Threading/Job Queuing enabled, code generation disabled

3. Augmented Qemu: Code generation enabled, code injection disabled

2Code generation
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4. Augmented Qemu: Code injection enabled

This strategy allows us to measure the overheads and benefits introduced by each

stage. In the event that the wall-clock execution time is slower than mainline due

to overheads introduced, it’s still possible to gather whether the optimised blocks are

having an effect by analysing the difference between items 3 and 4.

6.2 Execution Time Profiling with SPEC INT sjeng

Thirty samples were taken of the sjeng benchmark for each of the points outlined above.

The statistics in Table 6.1 appear to show that there is only a loss of performance by

introducing the ARM-LLVM subsystem. That said the loss isn’t large, somewhere in

the order of two to four seconds.

As the statistics presented in Table 6.1 show no positive results, an execution trace

was obtained justify why this might be the case. Table 6.2 shows a small snippet of

the data gathered. In total, 425 blocks were captured and translated, however the

number of executions of the optimised code is well inside the realm of insignificant.

Some interesting future work is most likely in the space of integrating optimised blocks

immediately as they become available, a strategy for which is outlined later.

6.3 Execution Time Profiling with SPEC INT h264ref

Due to the length of time needed to execute the h264ref benchmark, only 10 samples

were collected for each of the profiling points listed above. Analysis of the data is

shown in Table 6.3. The immediately apparent result, like the sjeng benchmark, is

that the augmented version, even with code injection is likely to perform worse than

mainline. While this isn’t optimal, there is a result that suggests the overall technique

has potential. Looking at the 95% confidence intervals for the code generation and code

injection stages, it shows that they are very nearly distinct, suggesting that injecting

the generated code may be having a positive effect on the emulation execution time.
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Mainline Qemu: 0.10.6 Seconds

Mean execution time 119.66

Sampled execution time std. dev. 2.45

Sampled execution time std. error 0.45

95% Confidence Interval for Sampled Mean [118.62, 120.70]

Augmented Qemu: Threading/Job Queuing Seconds

Mean execution time 121.90

Sampled execution time std. dev. 0.67

Sampled execution time std. error 0.12

95% Confidence Interval for Sampled Mean [121.61, 122.18]

Augmented Qemu: Code Generation Seconds

Mean execution time 122.01

Sampled execution time std. dev. 0.45

Sampled execution time std. error 0.08

95% Confidence Interval for Sampled Mean [121.82, 122.20]

Augmented Qemu: Code Injection Seconds

Mean execution time 122.23

Sampled execution time std. dev. 0.25

Sampled execution time std. error 0.05

95% Confidence Interval for Sampled Mean [122.13, 122.34]

Table 6.1: Statistical analysis of the wall-clock emulation times for the SPEC sjeng
benchmark
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Rank Block Identifier Total Executions LLVM-based Executions

. . . . . . . . . . . .

47 0x6064e610 2843888 5

60 0x60642530 2244995 10

74 0x606479d0 1869222 8

86 0x6064d7d0 1615497 2

92 0x60659380 1454777 2

98 0x60600e50 1366103 3

106 0x6063e1a0 1366005 5

117 0x60642d30 1151286 5

120 0x60645650 1093709 7

121 0x60644240 1088131 7

122 0x606463e0 1020576 8

132 0x606458c0 959371 7

. . . . . . . . . . . .

Table 6.2: Block execution data gathered from the sjeng benchmark with Qemu’s exec
debug option. The Total Executions column represents the number of times the block was
executed over the whole simulation. The Rank value is the block’s position in the list, as
sorted by total executions. The LLVM-based Executions value represents the number of times
the block was executed after injecting the optimised code.
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Mainline Qemu: 0.10.6 Seconds

Mean execution time 573.465

Sampled execution time std. dev. 7.391

Sampled execution time std. error 2.337

95% Confidence Interval for Sampled Mean [567.436, 579.495]

Augmented Qemu: Threading/Job Queuing Seconds

Mean execution time 578.849

Sampled execution time std. dev. 6.819

Sampled execution time std. error 2.156

95% Confidence Interval for Sampled Mean [573.286, 584.412]

Augmented Qemu: Code Generation Seconds

Mean execution time 589.497

Sampled execution time std. dev. 2.935

Sampled execution time std. error 0.928

95% Confidence Interval for Sampled Mean [587.103, 591.891]

Augmented Qemu: Code Injection Seconds

Mean execution time 580.728

Sampled execution time std. dev. 7.860

Sampled execution time std. error 2.486

95% Confidence Interval for Sampled Mean [574.316, 587.141]

Table 6.3: Statistical analysis of the wall-clock emulation times for the SPEC h264ref
benchmark
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Future Work

Here we discuss the potential developments for the project - ideas conceived whilst

working with Qemu and the LLVM Comiler Infrastructure. We take into account the

results discussed in Chapter 6 to suggest areas that might be worth further exploration.

The points listed below are ordered from short to long term projects and by relevance

to the approach presented.

7.1 Jump-To-Epilogue Support

It was intended that if the time was available during this project that jumping over large

gaps between the end of the LLVM code and the beginning of the TCG epilogue would

be implemented. There wasn’t time however, and in the case that more instructions are

implemented in the front-end this particular optimisation will most likely only become
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more critical. LLVM has shown the capability to optimise blocks to much shorter

lengths than their TCG counter-parts; as the blocks grow longer LLVM’s optimised

versions often approach half the length of the original block.

Some optimised no-ops are in place for length differences up to 15 bytes, but beyond

this the difference is simply accounted for by an un-optimised no-op slide down to the

epilogue. A jump in this case would present much better efficiency - it will not require

the intervening instructions to be read from memory, and a relative jump won’t cause

bubbles in the instruction pipeline as it is deterministic.

7.2 Add Further Instructions to the ARM-LLVM

Front-end

Currently only the LDR, STR, ADD, AND, MOV, ORR and SUB instructions are implemented

in the ARM front-end. Debug output from Qemu indicates that even this small amount

of instructions captures roughly 10% of blocks in the SPEC INT 2006 h264ref and

sjeng benchmarks. Extrapolating out from the results achieved so far indicates that

implementing several more high impact instructions could have a very positive result. A

promising instruction category appears to be Load/Store Multiple, and some of the test

Data Processing instructions such as TST or CMP appear frequently in many different

applications and large blocks.

Instructions adjusting the CPSR flgas require some work in terms of implementing

more of Qemu’s CPUARMState struct in the LLVM front-end. This is not a lot of work,

however needs to be done accurately - Qemu makes some optimisations with regards to

the CPSR in order to reduce the number of comparisons it needs to make to determine

if flags are enabled or not.
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7.3 Dynamic Injection of Optimised Blocks During

Execution

As part of the direct block chaining framework, Qemu has tools in place to adjust

pointers in block epilogues to control whether execution should return to dispatch or

proceed directly to the following block. Leveraging these functions, it should be possible

to dynamically patch blocks to jump to the optimised code as it becomes available1.

This may be in the form of a new TranslationBlock entry in the system, or a jump out

to the LLVM JIT’s code cache. Evidence presented in Chapter 6 on the SPEC sjeng

benchmark suggests this could give significant improvements in performance.

7.4 Multiple LLVM Threads

As more instructions are implemented in the front-end this may require more CPU

power than might be available on a given core, due to an increase in the number of

blocks that can be successfully translated. The number of cores available on modern

machines continues to increase, and so an area of research may be to investigate whether

the approach presented in this project can be scaled out to other cores. Some primary

concerns in this area would be proper queue management for a greater number of

threads, and investigation into whether this is actually worth while for the number of

blocks pushed into the queue

7.5 Asynchronously Read TCG IR and generate

LLVM IR

The front-end for LLVM implemented by this project translated ARM instructions

into LLVM IR for optimisation. While in the beginning it was thought that this might

lessen the abstraction and subsequent padding between what was intended by the ARM

1Blocks jumping into the now optimised block will also have to be modified to point to the new

code
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blocks and what might’ve been output at layers such as TCG IR or x86, it turned out

that the front-end to some extent reimplements the idea of TCG micro-ops. As such,

it may be advantageous to implement a front-end to LLVM in terms of TCG IR -

half the work is already achieved in splitting instructions up into operand calculation,

instruction calculation and result storage.

Creating a TCG IR front-end for LLVM has the benefit of enabling supported for

each front-end implemented by Qemu; support for MIPS, x86, ARM, PowerPC, M68k

and several other architectures.

7.6 Teach TCG about x86 LEA Instruction

This idea stems from observing the LLVM generated x86(-64) instructions - that most

of the optimisations come in the form of the LEA instruction. Using LEA allows the

processor to combine a lengthy chain of arithmetic operations into one. This particular

instruction shortens the number of bytes needed to represent the overall operation, thus

increasing the speed of the code.

This may require some finesse, as TCG is necessarily quite fast at generating target

code. Delaying the code generation through what might effectively boil down to false

optimisation due to the block not being hot could have a significant effect in some

applications. As such it should be judged whether this idea is feasible - at least it

would require a reverse traversal of the TCG micro-ops in order to determine which

ones could be bundled together in an efficient manner.



8
Conclusion

The work presented profiled an existing dynamic translator, Qemu, to determine where

the bulk of the performance degradation was introduced to functional ARM instruction

set simulations on x86-64. For Qemu, this was found to be in the dynamically translated

code; in the SPEC INT benchmarks profiled its execution accounted for between 60%

and 80% of the wall-clock execution time. Armed with this information, the aim

became to achieve faster functional simulations through asynchronous optimisation

of translated blocks. Asynchronous, or threaded optimisation was chosen due to the

increasing number of multi-CPU / multi-core machines entering the market, a trend

which is not predicted to decline any time soon.

While a reduction in wall-clock execution time was not achieved, there are strong

indications that the implementation has the potential to increase simulation efficiency.

Adding further instructions to the ARM-LLVM front end to cover more blocks, along
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with dynamic patching of the translated blocks as the optimised code becomes available

look to hold the most opportunity for increased performance.
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